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Another Interesting Area

» Relaxed Memory Models
Provided by modern chips to improve performance




Textbook Example: Dekker’s Algorithm

pO0: pl:
flag[0] := true flag[l] := true
while flag[l] = true { while flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }

// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Specification: mutual exclusion over critical section



Textbook Example: Dekker’s Algorithm

pO0: pl:
flag[0] := true~= flag[l] := true
while flag[l] = true { while® flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }

// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Specification: mutual exclusion over critical section



Textbook Example: Dekker’s Algorithm

pO0: pl:
flag[0] := true~= —ee—— L lag[l] := true
while flag[l]€= true ({ while® flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }

// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Specification: mutual exclusion over critical section



Beyond Textbooks: Weak Memory Models

pO0: pl:
flag[0] := true~= —e—f1lag[1l] := true
while flag[l]€= true ({ while®flag[0] = true ({
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }
// critical section
turn := 1
flag[0] := false

// critical section
turn := 0
flag[l] := false




Beyond Textbooks: Weak Memory Models

pO0: pl:
flag[0] := true™ flag[l] := true
whil { whi
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }
// critical section
turn := 1
flag[0] := false

// critical section
turn := 0
flag[l] := false




Beyond Textbooks: Weak Memory Models

O:
Flaglo] = truer—oe o
while flag][l true {

1:

1= whi flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }
// critical section // critical section
turn := 1 turn := 0
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Beyond Textbooks: Weak Memory Models

O:

while flag[l] = true {
if turn # 0 {
flag[0] := false
while turn # 0 { }
flag[0] := true

}

}

// critical section
turn := 1
flag[0] := false

1:

while flag[0] = true {
if turn # 1 {
flag[l] := false
while turn # 1 { }
flag[l] := true

}
}

// critical section

turn := 0
flag[l] := false



Beyond Textbooks: Weak Memory Models

pO0:
flag[0] := true
while flag[l] = true {
if turn # 0 {
flag[0] := false
while turn # 0 { }
flag[0] := true
}
}

[// critical section ]

turn := 1
flag[0] := false

pl:
flag[l] := true
while flag[0] = true
if turn # 1 {
flag[l] := false
while turn # 1 {
flag[l] := true
}
}

[// critical section ]
turn := 0
flag[l] := false

{

}



Fences

» Enforce order... at a cost

= Fences are expensive
105-1005 of cycles
collateral damage (e.qg., prevent compiler opts)

= example: removing a single fence yields 3x
speedup in a work-stealing queue

= Required fences depend on memory model

= Where should | put fences?



Where should I put fences?

On the one hand, memory barriers are expensive (100s of cycles,
maybe more), and should be used only when necessary.

On the other, synchronization bugs can be very difficult to track
down, so memory barriers should be used liberally, rather than
relying on complex platform-specific guarantees about limits to

memory instruction reordering.
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Easy!

pO0:
flag[0] :=
fence
while flag[l] =
if turn # 0 {
flag[0] :=

true

true {

false

while turn # 0 {

flag[0] :=
}
}

Ltrue

// critical section

turn := 1
flag[0] :=

false

}

pl:
flag[l] :=
fence
while flag[0] =
if turn # 1 {
flag[l] :=

true

true {

false

while turn # 1 {

flag[l] :=
}
}

true

// critical section

turn := 0
flag[l] :=

false

}



Easy!

pO0: pl:
flag[0] := true flag[l] := true
fence .55555555“‘-.EEEE§>
while flag[l] = true { while” flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true
} }
} }
// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false



Easy!

pO0: pl:
flag[0] := true flag[l] := true
fence ><%
while flag[l]™= true { while” flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true
} }
} }
// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false



Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
FTP{E;>RI- 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11}
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™% &4 1_3 botice);uintEDfPff’ 1 int Steal()_ { .
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }
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15
16
17

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top
if (b < t) {
bottom = t;
return EMPTY;
}
task = g->apl[b % g->size];
if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item t * g = wsqg;

5 if (b - t 2 g->size - 1) {
9 wsqg = expand();

7 g = wsqg;

8 }

9 g->aplb % g->size] = task;
10 bottom = b + 1;

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item t * g = wsqg;

5 if (t >= b)

6 return EMPTY;

7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))

9 return ABORT;

10 return task;

11 }




Chase-Lev Work-Stealing Queue

THE ART

%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

15
16
17

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top
if (b < t) {
bottom = t;
return EMPTY;
}
task = g->apl[b % g->size];
if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item t * g = wsqg;

5 if (b - t 2 g->size - 1) {
9 wsqg = expand();

7 g = wsqg;

8 }

9 g->aplb % g->size] = task;
10 bottom = b + 1;

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item t * g = wsqg;

5 if (t >= b)

6 return EMPTY;

7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))

9 return ABORT;

10 return task;

11 }




Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
FTP{E;>RI- 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11}
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™% &4 1_3 botice);uintEDfPff’ 1 int Steal()_ { .
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }




Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
THE();*RT 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11 }
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™8 £4 13 b otii;uintEDfPff’ 1 int steal()_ { '
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }




Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
THE();*RT 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11 }
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™8 £4 13 b otii;uintEDfPff’ 1 int steal()_ { '
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }




Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
FTP{E;>RI- 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11}
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™% &4 1_3 botice);uintEDfPff’ 1 int Steal()_ { .
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }




Chase-Lev Work-Stealing Queue

THE ART
%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top

if (b < t) {
bottom = t;
return EMPTY;

}

Qo

task = g->apl[b % g->size];

if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

~ o U1 >

void push(int task)
long b = bottom;
long t = top;
item t * g = wsqg;

{

if (b - t 2 g->size - 1) {
wsqg = expand();

q = wsq;
}

o)

g->aplb % g->size] = task;

bottom = b + 1;

int steal() {
long t = top;

long b = bottom;

item t * g = wsqg;
if (t >= Db)
return EMPTY;

o)

task = g->ap[t %

if (!CAS(&top, t,
return ABORT;
return task;

gq->sizel;

iesr ) )
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Goal

= Help the programmer place fences in the
orogram

Find optimal fence placement

= Principle

Restrict non-determinism s.t. program stays
within set of safe executions



Our Approach: Overview

= P’satisfies the specification S under M

r



Our Approach: Recipe

= Compute reachable states for the program

(sometimes under a bound)

= Compute constraints on execution that
guarantee that all "bad states” are avoided

* Implement the constraints with fences



Flow of Synthesis

- Abstract Interpretation builds state space

@D — Synthesisalgorithm builds a repair formula

SAT solver finds minimal solutions

- = Implement solutions with synchronization




Our Approach: Ingredients

= Operational semantics for weak memory
models

= An algorithm for finding fence constraints

= An algorithm for implementing fence
constraints as fences in the program




Operational Semantics for WMM

An ongoing research topic (e.qg., Sewell et al.)

Building a formal model by reverse engineering decisions
made by hardware designers



Operational Semantics for WMM

SC
IBM 370
TSO

PSO
Alpha
RMO
PowerPC

Classification due to Adve et al. IEEE Computer ‘g5 |



Operational Semantics for WMM

SC
IBM 370
TSO

PSO
Alpha

PowerPC

Classification due to Adve et al. IEEE Computer ‘g5




Operational Semantics for WMM

= Challenges
Model store buffers
Model execution buffers
Variety of re-ordering rules

= Semantics on board



Operational Semantics: State

Initially X=Y=R1=R2=0

Processor A Processor B

A:X=1 B.:R2=Y

A:Y=1 B,:Ri1=X
X=0
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n <
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Operational Semantics: Transition

Initially X=Y=R1=R2=0

Processor A
A:X=1
A:Y=1

Processor B
B.:R2=Y
B,:R1=X

X

o <
o o

A
N

A:Y=1

oo © O

{ B,:R1=X

X

_<
n n N ||

Z
o

oo P O




Compute Reachable States

initial

As [Specification
(1,2,0,2) at final state
H A(R1=0AR2=1)
-

Error state



Avoiding a State

= Toavoid a state
= Avoid all incoming transitions

= To avoid an incoming transition
= Either avoid the transition itself

-

= Qr avoid the source state




Avoidable Transitions

» Execution bufferis ordered

= A transition not executing first instruction in the
execution buffer can be avoided
By forcing a different transition to execute

rocessorA : S AX=1 0o A
A:X=1 2
AY =1
A:Y=1
A . Z =1 A._z:z =1 A3
.
A:W=1 AW =1
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» Execution bufferis ordered

= A transition not executing first instruction in the
execution buffer can be avoided
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Avoidable Transitions

= Toavoid A, in this state
Force A, to execute before A,
Or force A, to execute before A,

» Language of ordering constraints

A, <A VA, <A,
Processor A ( _ \ Al
A:X=1 e A2
A:Y=1 2 A
A3: 7 =1 A:Z=1 3
A:W=1 fcll =




Computing Avoid Formulae

= Ordering predicates
1 <12
|2 must execute before |2

= Ordering constraints are (positive) Boolean
combinations of ordering predicates

» Fixed-point computation computes an avoid
formula for every state

= Final constraints is conjunction avoiding all
"bad states”



Back to Our Example

initial




Fence Placement

4 )

Al1<A2AB1<B2

) 4

~

Processor A Processor B

A:X=1 B:R2=Y

fence(“store-store”) fence(“load-load”)
\Az:Y=1 B,:Ri1=X J




Fence Placement

= Trivial in the previous example
Satisfying assignment to the ordering constraint
Every ordering predicate realized as a fence
Only had to choose fence type

= Find minimal number of fences
Minimal satisfying assignments?

(obviously?) not good enough due to transitive
dependencies



Fence Placement

L1: STORE X,
L2: LOAD R1,
L3: LOAD R2,
L4: LOAD R3,
L5: STORE Z,

P < K K =

Constraint: L1 < Lg



Fence Placement

L1l: STORE X,
L2: LOAD R1,
L3: LOAD R2,
L4: LOAD R3,
L5: STORE Z,

P <K K K P

Constraint: Li<LgAL2<Lg



Fence Placement

= Afence placed on every /
CFG path between

ordered statements

= Fencetypes
= Full

= Partial (e.qg., store-load)

L6

\ L1<L6AL3<L6E




Evaluation

» Pick a data structure
Preferably — one with known correct fences

= Pick a “reasonable” set of clients
Intuition
Exhaustive up to some bound

= Run
= Examine results
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Optimization and Scaling

= Order of iteration

For acyclic graphs, we have a simple recursive
algorithm

= Constraints are shared

For several “instances” of the same inlined
function

Between pProcessors

= “Safe State” pruning



Sources of Unboundedness

* Unbounded heap

» Unbounded execution buffer



Basic Recipe

= Compute reachable states of the program

= Compute constraints on execution that
guarantee that all "bad states” are avoided

* Implement the constraints with fences



Basic Recipe

= Compute reachable states of the program




Example: store-buffer models

= TSO & PSO
. ' store ﬂe flush
Intel x86 is ~TSO

= Memory Fences
o Restore order

= Every store before
the fence becomes
globally visible
before anything
after the fence —
load
executes




Mutual Exclusion Algorithm

Process o:

while(true) §

5

store ento = true;

fence;
store turn = 1;
fence;
do §
load e = enta;
load t = turn;

} while(e == true && t ==1);

[[critical section here
store ento = false;

Process 1:

while(true) §

5

store ent1 = true;

fence;
store turn = o;
fence;
do §
load e = ento;
load t = turn;

} while(e == true && t == 0);

[[critical section here
store ent1 = false;

62



Store Buffers




Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}
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e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
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}
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Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}
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Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}




What can we do?

= Under-approximate

Bound the length of execution buffers (previously
mentioned). Implies a bound on state space

Bound context switches (other work)
Dynamic synthesis (PLDI'12)

= Over-approximate
Sound abstraction of buffer content, next
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Abstract Interpretation for RMM

Main Idea: Bounded over-approximation of
unbounded buffers



First Attempt:

Process o:
while(true) §
store ento = true;

fence;
store turn = 1;
fence;
do §
load e = enta;
load t = turn;

} while(e == true && t ==1);

[[critical section here
store ento = false;

5

Set Abstraction

Process 1:
while(true) §
store ent1 = true;

fence;
store turn = o;
fence;
do §
load e = ento;
load t = turn;

} while(e == true && t == 0);
[[critical section here
store ent1 = false;

5

= Abstract each store buffer as a set
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First Attempt: Set Abstraction

Process o: /

\

while(true) §

store ento = true;

fence;

store turn =1,

fence; ento

d enti
o { turn
load e = enta; K /
load t = turn; S

} while(e == true && t ==1); } while(e == true && t == 0);

/[critical section here /[critical section here

store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘
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Process o: /

while(true) §
store ento = true;
fence;
store turn = 1;
fence;
do §
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load t = turn; k U — T /
} while(e == true && t ==1); } while(e == true && t == 0);

[[critical section here [[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘
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Process o: /

while(true) §
fence;
store turn = 1;
fence;

do §
load e = enta;
load t = turn; K U — T

} while(e == true && t ==1); } while(e == true && t == 0);
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First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;

\

store turn = 1;

fence; {}
do §§
load e = enta; K j
load t = turn; S
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘



First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;
fence;

\

fence;
do §

load e = enta; K
load t = turn;
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} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘




First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;
fence;
store turn = 1;

\

do 2
load e = enta; K j
load t = turn; S
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘



First Attempt: Set Abstraction

Process o: /

while(true) § {false}
store ento = true; g
fence; X
store turn = 1;
fence; {1
do §§
load e = enta;
load t = turn; K U — T j
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here

} }

s Abstract each store buffer as a set ‘



First Attempt: Set Abstraction

Process o: /

\

while(true) § ento, ¢ false, true }
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fence; {1
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load t = turn; S
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘



First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;
fence;
store turn = 1;
fence;

do §
load e = enta;
load t = turn; k U — T

} while(e == true && t ==1); } while(e == true && t == 0);

[[critical section here [[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set d

N

{ false, true}

{3
{3




Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
fence
e:=X

assert e == 2;

{3

{3




Second Attempt: record most recent value

Initially X == 0
Process o Process 1
o Xe=2 while (X != 1) {nop }
X:=2
fence
e:=X

assert e == 2;

{1}

{3




Second Attempt: record most recent value

Initially X == 0
Process o Process 1
L X2 while (X1=1) {nop}
X:=2
flush (2t time) fence
e:=X

assert e == 2;

p
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Second Attempt: record most recent value

Initially X == 0
Process o Process 1
‘s (CWhIE I 057 )
X:=2
flush (2t time) fence
e:=X

assert e == 2;
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Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
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Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
fush (2 time) Cfence
flush (2" time) e =X

assert e == 2;
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Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
flush (15t time) fence
flush (27 ime) T S
assert e == 2;
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Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
flush (25t time) fence
flush (2" time) e =X

assert e == 2;

p

{1}

{3




Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
flush (25t time) fence
flush (2" time) e =X

assert e == 2;

p

{1}

{3




Abstract Memory Models - Requirements

* |ntra-process coherence: a process should see
the most recent value it wrote

= Preserve fence semantics

= Partial inter-process coherence: preserve as
much order information as feasible (bounded)

Enable strong flushes

= Sound
= Simple construction!
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Partial Coherence Abstractions
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Intuition

= Making unbounded number of writes to a
memory location without a flush?
Seems very esoteric
Your program Is suspicious

flag := true
while other flag = true {
flag := false

//Do something
flag := true
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Adjusted Recipe

= Compute (abstract) reachable states for
the program using partial-coherence
abstraction

= Compute constraints on execution that
guarantee that all "bad states” are avoided

* Implement the constraints with fences



Flow of Synthesis

- Abstract Interpretation builds state space

@D — Synthesisalgorithm builds a repair formula

SAT solver finds minimal solutions

- = Implement solutions with synchronization




Thinking Roadmap
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More information

= My group @ ETH Zurich: http://www.srl.inf.ethz.ch/

» Fender: http://practicalsynthesis.org/fender/

» Workshops:
PSY: http://practicalsynthesis.org/psy2012/
Dagstuhl:

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152
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thanks for your attention

merci pour votre attention ©



