MACHINE-ASSISTED
CONCURRENT PROGRAMMING

Martin Vechev

ETH Zurich

(Lecture 2)

Plan

Setting

Program analysis by abstract interpretation

Synthesis based on abstract interpretation

Analysis + synthesis for weak memory models

Instantiate for Concurrency

Pr S

¥
PE S

-~

Program

. Restriction

Abstract
counter
example

l

Abstraction

. Refinement

~

Abstract

> counter
example

3

Instantiate for Concurrency

Pr S
v

PE S /

Program

. Restriction

Abstract
counter
example

l

Abstraction

. Refinement

~

Abstract

> counter
example

Change the program to match the abstraction,

Instantiate for Concurrency

Pr S
v

PE S

Program

. Restriction

Abstract
counter
example

l

Abstraction

. Refinement

T

Abstract

Change the program to match the abstraction,

> counter
example

y

Another Interesting Area

» Relaxed Memory Models
Provided by modern chips to improve performance

Textbook Example: Dekker’s Algorithm

pO0: pl:
flag[0] := true flag[l] := true
while flag[l] = true { while flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }

// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Specification: mutual exclusion over critical section

Textbook Example: Dekker’s Algorithm

pO0: pl:
flag[0] := true~= flag[l] := true
while flag[l] = true { while® flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }

// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Specification: mutual exclusion over critical section

Textbook Example: Dekker’s Algorithm

pO0: pl:
flag[0] := true~= —ee—— L lag[l] := true
while flag[l]€= true ({ while® flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }

// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Specification: mutual exclusion over critical section

Beyond Textbooks: Weak Memory Models

pO0: pl:
flag[0] := true~= —e—f1lag[1l] := true
while flag[l]€= true ({ while®flag[0] = true ({
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }
// critical section
turn := 1
flag[0] := false

// critical section
turn := 0
flag[l] := false

Beyond Textbooks: Weak Memory Models

pO0: pl:
flag[0] := true™ flag[l] := true
whil { whi
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }
// critical section
turn := 1
flag[0] := false

// critical section
turn := 0
flag[l] := false

Beyond Textbooks: Weak Memory Models

O:
Flaglo] = truer—oe o
while flag][l true {

1:

1= whi flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true

} }
} }
// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Beyond Textbooks: Weak Memory Models

O:

while flag[l] = true {
if turn # 0 {
flag[0] := false
while turn # 0 { }
flag[0] := true

}

}

// critical section
turn := 1
flag[0] := false

1:

while flag[0] = true {
if turn # 1 {
flag[l] := false
while turn # 1 { }
flag[l] := true

}
}

// critical section

turn := 0
flag[l] := false

Beyond Textbooks: Weak Memory Models

pO0:
flag[0] := true
while flag[l] = true {
if turn # 0 {
flag[0] := false
while turn # 0 { }
flag[0] := true
}
}

[// critical section]

turn := 1
flag[0] := false

pl:
flag[l] := true
while flag[0] = true
if turn # 1 {
flag[l] := false
while turn # 1 {
flag[l] := true
}
}

[// critical section]
turn := 0
flag[l] := false

{

}

Fences

» Enforce order... at a cost

= Fences are expensive
105-1005 of cycles
collateral damage (e.qg., prevent compiler opts)

= example: removing a single fence yields 3x
speedup in a work-stealing queue

= Required fences depend on memory model

= Where should | put fences?

Where should I put fences?

On the one hand, memory barriers are expensive (100s of cycles,
maybe more), and should be used only when necessary.

On the other, synchronization bugs can be very difficult to track
down, so memory barriers should be used liberally, rather than
relying on complex platform-specific guarantees about limits to

memory instruction reordering.
THE ART

]] 7
— Herlihy and Shavit MULTIPROCESSOR
PROGRAMMING

P

Maurice Herlihy & Nir Shavit ®% 54

Easy!

pO0:
flag[0] :=
fence
while flag[l] =
if turn # 0 {
flag[0] :=

true

true {

false

while turn # 0 {

flag[0] :=
}
}

Ltrue

// critical section

turn := 1
flag[0] :=

false

}

pl:
flag[l] :=
fence
while flag[0] =
if turn # 1 {
flag[l] :=

true

true {

false

while turn # 1 {

flag[l] :=
}
}

true

// critical section

turn := 0
flag[l] :=

false

}

Easy!

pO0: pl:
flag[0] := true flag[l] := true
fence .55555555“‘-.EEEE§>
while flag[l] = true { while” flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true
} }
} }
// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Easy!

pO0: pl:
flag[0] := true flag[l] := true
fence ><%
while flag[l]™= true { while” flag[0] = true {
if turn # 0 { if turn # 1 {
flag[0] := false flag[l] := false
while turn # 0 { } while turn # 1 { }
flag[0] := true flag[l] := true
} }
} }
// critical section // critical section
turn := 1 turn := 0

flag[0] := false flag[l] := false

Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
FTP{E;>RI- 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11}
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™% &4 1_3 botice);uintEDfPff’ 1 int Steal()_ { .
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }

Chase-Lev Work-Stealing Queue

THE ART

%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

15
16
17

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top
if (b < t) {
bottom = t;
return EMPTY;
}
task = g->apl[b % g->size];
if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item t * g = wsqg;

5 if (b - t 2 g->size - 1) {
9 wsqg = expand();

7 g = wsqg;

8 }

9 g->aplb % g->size] = task;
10 bottom = b + 1;

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item t * g = wsqg;

5 if (t >= b)

6 return EMPTY;

7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))

9 return ABORT;

10 return task;

11 }

Chase-Lev Work-Stealing Queue

THE ART

%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

15
16
17

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top
if (b < t) {
bottom = t;
return EMPTY;
}
task = g->apl[b % g->size];
if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item t * g = wsqg;

5 if (b - t 2 g->size - 1) {
9 wsqg = expand();

7 g = wsqg;

8 }

9 g->aplb % g->size] = task;
10 bottom = b + 1;

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item t * g = wsqg;

5 if (t >= b)

6 return EMPTY;

7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))

9 return ABORT;

10 return task;

11 }

Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
FTP{E;>RI- 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11}
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™% &4 1_3 botice);uintEDfPff’ 1 int Steal()_ { .
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }

Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
THE();*RT 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11 }
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™8 £4 13 b otii;uintEDfPff’ 1 int steal()_ { '
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }

Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
THE();*RT 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11 }
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™8 £4 13 b otii;uintEDfPff’ 1 int steal()_ { '
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }

Chase-Lev Work-Stealing Queue

1 int take () { 1 void push(int task) {
2 long b = bottom - 1; 2 long b = bottom;
FTP{E;>RI- 3 item t * g = wsq; 3 long t = top;
5 4 bottom = Db 4 item t * g = wsqg;
MULTIPROCESSOR 5 if (b - t 2 g->size - 1) {
PROGRAMMING 5 long t = top 6 wsq = expand();
6 if (b < t) { 7 g = wsqg;
7 bottom = t; 8 }
8 return EMPTY; 9 g->apl[b % g->size] = task;
9 }
10 task = g->apl[b % g->size]; 10 bottom = b + 1;
11 if (b > t) 11}
12 return task
13 if (!CAS(&top, t, t+l))
Maurice Herlihy & Nir Shavit ™% &4 1_3 botice);uintEDfPff’ 1 int Steal()_ { .
16 return task; 2 long t = top;
17 }
3 long b = bottom;
4 item t * g = wsqg;
5 if (t >= Db)
6 return EMPTY;
7 task = g->ap[t % g->size];
8 if (!CAS(&top, t, t+l))
9 return ABORT;
10 return task;

11 }

Chase-Lev Work-Stealing Queue

THE ART
%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top

if (b < t) {
bottom = t;
return EMPTY;

}

Qo

task = g->apl[b % g->size];

if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

~ o U1 >

void push(int task)
long b = bottom;
long t = top;
item t * g = wsqg;

{

if (b - t 2 g->size - 1) {
wsqg = expand();

q = wsq;
}

o)

g->aplb % g->size] = task;

bottom = b + 1;

int steal() {
long t = top;

long b = bottom;

item t * g = wsqg;
if (t >= Db)
return EMPTY;

o)

task = g->ap[t %

if (!CAS(&top, t,
return ABORT;
return task;

gq->sizel;

iesr))

Chase-Lev Work-Stealing Queue

THE ART
%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top

if (b < t) {
bottom = t;
return EMPTY;

}

Qo

task = g->apl[b % g->size];

if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

~ o U1 >

void push(int task)
long b = bottom;
long t = top;
item t * g = wsqg;

{

if (b - t 2 g->size - 1) {
wsqg = expand();

q = wsq;
}

o)

g->aplb % g->size] = task;

bottom = b + 1;

int steal() {
long t = top;

long b = bottom;

item t * g = wsqg;
if (t >= Db)
return EMPTY;

o)

task = g->ap[t %

if (!CAS(&top, t,
return ABORT;
return task;

gq->sizel;

iesr))

Chase-Lev Work-Stealing Queue

THE ART
%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top

if (b < t) {
bottom = t;
return EMPTY;

}

Qo

task = g->apl[b % g->size];

if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

~ o U1 >

void push(int task)
long b = bottom;
long t = top;
item t * g = wsqg;

{

if (b - t 2 g->size - 1) {
wsqg = expand();

q = wsq;
}

o)

g->aplb % g->size] = task;

bottom = b + 1;

int steal() {
long t = top;

long b = bottom;

item t * g = wsqg;
if (t >= Db)
return EMPTY;

o)

task = g->ap[t %

if (!CAS(&top, t,
return ABORT;
return task;

gq->sizel;

iesr))

Chase-Lev Work-Stealing Queue

THE ART
%
MULTIPROCESSOR
PROGRAMMING

Maurice Herlihy & Nir Shavit ®% &4

int

}

take () {

long b = bottom - 1;
item t * g = wsq;
bottom b

long t = top

if (b < t) {
bottom = t;
return EMPTY;

}

Qo

task = g->apl[b % g->size];

if (b > t)
return task
if (!CAS(&top, t, t+l))
return EMPTY;
bottom = t + 1;
return task;

~ o U1 >

void push(int task)
long b = bottom;
long t = top;
item t * g = wsqg;

{

if (b - t 2 g->size - 1) {
wsqg = expand();

q = wsq;
}

o)

g->aplb % g->size] = task;

bottom = b + 1;

int steal() {
long t = top;

long b = bottom;

item t * g = wsqg;
if (t >= Db)
return EMPTY;

o)

task = g->ap[t %

if (!CAS(&top, t,
return ABORT;
return task;

gq->sizel;

iesr))

Goal

= Help the programmer place fences in the
orogram

Find optimal fence placement

= Principle

Restrict non-determinism s.t. program stays
within set of safe executions

Our Approach: Overview

= P’satisfies the specification S under M

r

Our Approach: Recipe

= Compute reachable states for the program

(sometimes under a bound)

= Compute constraints on execution that
guarantee that all "bad states” are avoided

* Implement the constraints with fences

Flow of Synthesis

- Abstract Interpretation builds state space

@D — Synthesisalgorithm builds a repair formula

SAT solver finds minimal solutions

- = Implement solutions with synchronization

Our Approach: Ingredients

= Operational semantics for weak memory
models

= An algorithm for finding fence constraints

= An algorithm for implementing fence
constraints as fences in the program

Operational Semantics for WMM

An ongoing research topic (e.qg., Sewell et al.)

Building a formal model by reverse engineering decisions
made by hardware designers

Operational Semantics for WMM

SC
IBM 370
TSO

PSO
Alpha
RMO
PowerPC

Classification due to Adve et al. IEEE Computer ‘g5 |

Operational Semantics for WMM

SC
IBM 370
TSO

PSO
Alpha

PowerPC

Classification due to Adve et al. IEEE Computer ‘g5

Operational Semantics for WMM

= Challenges
Model store buffers
Model execution buffers
Variety of re-ordering rules

= Semantics on board

Operational Semantics: State

Initially X=Y=R1=R2=0

Processor A Processor B

A:X=1 B.:R2=Y

A:Y=1 B,:Ri1=X
X=0

20

n <
o ol

o ©

A
N
o

B,:R1=X

N

>
._.<
Il
[

Operational Semantics: Transition

Initially X=Y=R1=R2=0

Processor A
A:X=1
A:Y=1

Processor B
B.:R2=Y
B,:R1=X

X

o <
o o

A
N

A:Y=1

oo © O

{ B,:R1=X

X

_<
n n N ||

Z
o

oo P O

Compute Reachable States

initial

As [Specification
(1,2,0,2) at final state
H A(R1=0AR2=1)
-

Error state

Avoiding a State

= Toavoid a state
= Avoid all incoming transitions

= To avoid an incoming transition
= Either avoid the transition itself

-

= Qr avoid the source state

Avoidable Transitions

» Execution bufferis ordered

= A transition not executing first instruction in the
execution buffer can be avoided
By forcing a different transition to execute

rocessorA : S AX=1 0o A
A:X=1 2
AY =1
A:Y=1
A . Z =1 A._z:z =1 A3
.
A:W=1 AW =1

Avoidable Transitions

» Execution bufferis ordered

= A transition not executing first instruction in the
execution buffer can be avoided
By forcing a different transition to execute

pocessorne [S AX=1 g A
A:X=1 2
AY =1
A:Y=1
A . Z =1 A._z:z =1 A3
.
A:W=1 AW =1

Avoidable Transitions

= Toavoid A, in this state
Force A, to execute before A,
Or force A, to execute before A,

» Language of ordering constraints

A, <A VA, <A,
Processor A (_ \ Al
A:X=1 e A2
A:Y=1 2 A
A3: 7 =1 A:Z=1 3
A:W=1 fcll =

Computing Avoid Formulae

= Ordering predicates
1 <12
|2 must execute before |2

= Ordering constraints are (positive) Boolean
combinations of ordering predicates

» Fixed-point computation computes an avoid
formula for every state

= Final constraints is conjunction avoiding all
"bad states”

Back to Our Example

initial

Fence Placement

4)

Al1<A2AB1<B2

) 4

~

Processor A Processor B

A:X=1 B:R2=Y

fence(“store-store”) fence(“load-load”)
\Az:Y=1 B,:Ri1=X J

Fence Placement

= Trivial in the previous example
Satisfying assignment to the ordering constraint
Every ordering predicate realized as a fence
Only had to choose fence type

= Find minimal number of fences
Minimal satisfying assignments?

(obviously?) not good enough due to transitive
dependencies

Fence Placement

L1: STORE X,
L2: LOAD R1,
L3: LOAD R2,
L4: LOAD R3,
L5: STORE Z,

P < K K =

Constraint: L1 < Lg

Fence Placement

L1l: STORE X,
L2: LOAD R1,
L3: LOAD R2,
L4: LOAD R3,
L5: STORE Z,

P <K K K P

Constraint: Li<LgAL2<Lg

Fence Placement

= Afence placed on every /
CFG path between

ordered statements

= Fencetypes
= Full

= Partial (e.qg., store-load)

L6

\ L1<L6AL3<L6E

Evaluation

» Pick a data structure
Preferably — one with known correct fences

= Pick a “reasonable” set of clients
Intuition
Exhaustive up to some bound

= Run
= Examine results

Results

Initial

Client

=
=]
g —
g
=%

EMO

F50

TS0

sSC

States

Edges

+
3

States

Edges

H
M

States

Edges

States

Edges

empty
empty
empty
empty
empty
empty

|d

[=

ee|dd
edled
ed|de
ele|d

1219
4034
24194
86574
59119
233414

2671
12670
61514
243822
167067
6530094

lid e bl e = b

455
2678
T025

15450
11023
51990

743
6354
13639
35362
24362
119050

P2 I I P = =

228
586
1724
2476
2570
9638

il6
904
2512
3972
4010
16822

146

252
1029
1538
1541

4928

180
328
1325
2126
2073

7632

Chase-Lev
WS

empty
empty
empty
empty
empty

PPpL(ipt|sss)
Lt pit]sss)

PPpiiiip|sss)
Lttt tpp | sss)
titpiiptp|ss)

386283
048408
281314
325858

280396

1030857
2819355
RTRER0
4150650
GOB308

74533
124455
G260
361855

20573

256613
255390
241814
[0BOR3S
54696

2348
6418
10564
Of78
0197

20004

Q380
16317
13956
14499

1961
3101
4199
3473
4760

6740
4069
5700
4537
6455

]
22

Lp|ss

tpt|ss
ptplss
ptt]ss
ptt]ss

2151
072l
G0834
85104
23913

3190
16668
195246
198353
48997

882
3908
31289
29920
9976

1171
5811
64133
62020
18002

676
2256
4045
4130

2353

B52
ill6
5688
5987
3269

570
1410
2317
2198
1314

694
1786
3007
2866
1654

S-|ddrdr|dddaeldddd s

388
T504
13879
33004

2702
14477
26422

ﬁ?ﬁ;?

1388
7504
13879
33004

2102
14477
26422

ﬁ?ﬁ;?

480
2560
4845

11770

674
3750
7115

17210

JE8
JE8
3E8
388

490
490
490
440

empty
empty
empty

pt
pttp
ppltt

71
3054

1276

93
6190

2250

71
3041
1276

93
6167

2250

43
407

175

48
[l
47

36
392

270

38
452

323

empty
empty
empty
empty

ar|ra
aalm
ar|ar
aaa|rr

4079
20034
6093
41520

6247
31623
0905
66533

| T e T) B A Y) L O e T T) I S S S)

4079
20034
6003
41520

6247
31623
0905
66533

e Ty By) Y (] e e O T B S O T o

TEE]
168
1671
3311

1308
1411
1968
4072

1088
1168
1671
3311

1308
1411
1968
4072

Performance

160.06

55] 45.17

et tpp | s55) 33 212.29
ttpitptp| ss)

Dekker

Treiber

ar|ra
aalrr
ar|ar
aaa [rrr

Optimization and Scaling

= Order of iteration

For acyclic graphs, we have a simple recursive
algorithm

= Constraints are shared

For several “instances” of the same inlined
function

Between pProcessors

= “Safe State” pruning

Sources of Unboundedness

* Unbounded heap

» Unbounded execution buffer

Basic Recipe

= Compute reachable states of the program

= Compute constraints on execution that
guarantee that all "bad states” are avoided

* Implement the constraints with fences

Basic Recipe

= Compute reachable states of the program

Example: store-buffer models

= TSO & PSO
. ' store ﬂe flush
Intel x86 is ~TSO

= Memory Fences
o Restore order

= Every store before
the fence becomes
globally visible
before anything
after the fence —
load
executes

Mutual Exclusion Algorithm

Process o:

while(true) §

5

store ento = true;

fence;
store turn = 1;
fence;
do §
load e = enta;
load t = turn;

} while(e == true && t ==1);

[[critical section here
store ento = false;

Process 1:

while(true) §

5

store ent1 = true;

fence;
store turn = o;
fence;
do §
load e = ento;
load t = turn;

} while(e == true && t == 0);

[[critical section here
store ent1 = false;

62

Store Buffers

Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}

64

Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}

65

Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}

66‘

Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}

Unbounded Store Buffers..

= Even for very simple patterns
e.g. spin-loops with writes in loop body

flag := true

while other flag = true {
flag := false
//Do something
flag := true

}

What can we do?

= Under-approximate

Bound the length of execution buffers (previously
mentioned). Implies a bound on state space

Bound context switches (other work)
Dynamic synthesis (PLDI'12)

= Over-approximate
Sound abstraction of buffer content, next

69

Abstract Interpretation for RMM

Main Idea: Bounded over-approximation of
unbounded buffers

First Attempt:

Process o:
while(true) §
store ento = true;

fence;
store turn = 1;
fence;
do §
load e = enta;
load t = turn;

} while(e == true && t ==1);

[[critical section here
store ento = false;

5

Set Abstraction

Process 1:
while(true) §
store ent1 = true;

fence;
store turn = o;
fence;
do §
load e = ento;
load t = turn;

} while(e == true && t == 0);
[[critical section here
store ent1 = false;

5

= Abstract each store buffer as a set

71

First Attempt: Set Abstraction

Process o: /

\

while(true) §

store ento = true;

fence;

store turn =1,

fence; ento

d enti
o { turn
load e = enta; K /
load t = turn; S

} while(e == true && t ==1); } while(e == true && t == 0);

/[critical section here /[critical section here

store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘

First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;
fence;
store turn = 1;
fence;
do §

load e = enta;
load t = turn; k U — T /
} while(e == true && t ==1); } while(e == true && t == 0);

[[critical section here [[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘

N

First Attempt: Set Abstraction

Process o: /

while(true) §
fence;
store turn = 1;
fence;

do §
load e = enta;
load t = turn; K U — T

} while(e == true && t ==1); } while(e == true && t == 0);

[[critical section here [[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘

First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;

\

store turn = 1;

fence; {}
do §§
load e = enta; K j
load t = turn; S
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘

First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;
fence;

\

fence;
do §

load e = enta; K
load t = turn;

INJUAA L CWJUI 1

'
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘

First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;
fence;
store turn = 1;

\

do 2
load e = enta; K j
load t = turn; S
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘

First Attempt: Set Abstraction

Process o: /

while(true) § {false}
store ento = true; g
fence; X
store turn = 1;
fence; {1
do §§
load e = enta;
load t = turn; K U — T j
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here

} }

s Abstract each store buffer as a set ‘

First Attempt: Set Abstraction

Process o: /

\

while(true) § ento, ¢ false, true }
store ento=true; S
fence; X
store turn = 1;
fence; {1
do §§
load e = enta; K j
load t = turn; S
} while(e == true && t ==1); } while(e == true && t == 0);
/[critical section here /[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set ‘

First Attempt: Set Abstraction

Process o: /

while(true) §
store ento = true;
fence;
store turn = 1;
fence;

do §
load e = enta;
load t = turn; k U — T

} while(e == true && t ==1); } while(e == true && t == 0);

[[critical section here [[critical section here
store ento = false; store ent1 = false;

} }
» Abstract each store buffer as a set d

N

{ false, true}

{3
{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
fence
e:=X

assert e == 2;

{3

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
o Xe=2 while (X != 1) {nop }
X:=2
fence
e:=X

assert e == 2;

{1}

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
L X2 while (X1=1) {nop}
X:=2
flush (2t time) fence
e:=X

assert e == 2;

p

{1}

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
‘s (CWhIE I 057)
X:=2
flush (2t time) fence
e:=X

assert e == 2;

p

{1}

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
flush (15t time) fence
e:=X

assert e == 2;

p

{1}

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
Aush (time Cfence
e:=X

assert e == 2;

‘a N

{1}

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
fush (2 time) Cfence
flush (2" time) e =X

assert e == 2;

‘a N

{1}

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
flush (15t time) fence
flush (27 ime) T S
assert e == 2;

‘a N

{1}

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
flush (25t time) fence
flush (2" time) e =X

assert e == 2;

p

{1}

{3

Second Attempt: record most recent value

Initially X == 0
Process o Process 1
X:=1 while (X!=1) {nop}
X:=2
flush (25t time) fence
flush (2" time) e =X

assert e == 2;

p

{1}

{3

Abstract Memory Models - Requirements

* |ntra-process coherence: a process should see
the most recent value it wrote

= Preserve fence semantics

= Partial inter-process coherence: preserve as
much order information as feasible (bounded)

Enable strong flushes

= Sound
= Simple construction!

91

Partial Coherence Abstractions

Partial Coherence Abstractions

Recent Unordered Bounded
value elements / length k
/
\]
........... N S o —|

--

--

--

--
»

--

--

--

.
--

--
»

--

Partial Coherence Abstractions

Recent Unordered Bounded
value elements / length k
/
\]
........... N S o —|

--

--

--

--
»

--

--

--

.
--

--
»

--

Partial Coherence Abstractions

Recent Unordered Bounded
value elements / length k
/
\]
........... N S o —|

--

--

--

--
»

--

--

--

.
--

--
»

--

Partial Coherence Abstractions

Recent Unordered Bounded
value elements / length k
/
\]
........... N S o —|

--

--

--

--
»

--

--

--

.
--

--
»

--

Intuition

= Making unbounded number of writes to a
memory location without a flush?
Seems very esoteric
Your program Is suspicious

flag := true
while other flag = true {
flag := false

//Do something
flag := true

97

Adjusted Recipe

= Compute (abstract) reachable states for
the program using partial-coherence
abstraction

= Compute constraints on execution that
guarantee that all "bad states” are avoided

* Implement the constraints with fences

Flow of Synthesis

- Abstract Interpretation builds state space

@D — Synthesisalgorithm builds a repair formula

SAT solver finds minimal solutions

- = Implement solutions with synchronization

Thinking Roadmap

-~

~

Program

. Restriction

Abstract
counter
example

l

Abstraction

. >
Refinement COUDESH
example

100 ‘

Abstract

Thinking Roadmap

-~

~

Program

. Restriction

Abstract
counter
example

>.

l

Abstraction

_ >
Refinement couT
example

Abstract

Change the program to match the abstractionm‘

Thinking Roadmap

@ -
@
@

Program

. Restriction E

Abstract
counter
example

l

Abstraction

>.

Abstract

. Refinement

> counter
example

Change the program to match the abstraction_

y

More information

= My group @ ETH Zurich: http://www.srl.inf.ethz.ch/

» Fender: http://practicalsynthesis.org/fender/

» Workshops:
PSY: http://practicalsynthesis.org/psy2012/
Dagstuhl:

http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152

r

http://www.srl.inf.ethz.ch/
http://www.srl.inf.ethz.ch/
http://www.srl.inf.ethz.ch/
http://practicalsynthesis.org/psy2012/
http://practicalsynthesis.org/psy2012/
http://practicalsynthesis.org/psy2012/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152

thanks for your attention

merci pour votre attention ©

