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• Program analysis by abstract interpretation 

 

• Synthesis based on abstract interpretation 

 

• Analysis + synthesis for weak memory models 
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Another Interesting Area 

 Relaxed Memory Models 

 Provided by modern chips to improve performance 



Textbook Example: Dekker’s Algorithm 

p0:  

flag[0] := true  

while flag[1] = true {  

  if turn ≠ 0 {  

    flag[0] := false  

    while turn ≠ 0 { }  

    flag[0] := true  

  }  

}  

// critical section 

turn := 1  

flag[0] := false 

p1:  

flag[1] := true  

while flag[0] = true {  

  if turn ≠ 1 {  

    flag[1] := false  

    while turn ≠ 1 { }  

    flag[1] := true  

  }  

}  

// critical section 

turn := 0  

flag[1] := false 

Specification: mutual exclusion over critical section 
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Beyond Textbooks: Weak Memory Models 

 Re-ordering of operations 

 Non-atomic stores 
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Fences 

 Enforce order… at a cost 
 Fences are expensive 

 10s-100s of cycles 
 collateral damage (e.g., prevent compiler opts) 

 example: removing a single fence yields 3x 
speedup in a work-stealing queue 

 Required fences depend on memory model 
 

 Where should I put fences? 
 



Where should I put fences? 

On the one hand, memory barriers are expensive (100s of cycles, 
maybe more), and should be used only when necessary.  
 
On the other, synchronization bugs can be very difficult to track 
down, so memory barriers should be used liberally, rather than 
relying on complex platform-specific guarantees about limits to 
memory instruction reordering. 
 
 – Herlihy and Shavit 



Easy! 

p0:  

flag[0] := true 

fence  

while flag[1] = true {  
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1  int take() { 

2   long b = bottom – 1; 

3   item_t * q = wsq; 

4   bottom = b 

 

5   long t = top 

6   if (b < t) { 

7      bottom = t; 

8      return EMPTY; 

9   } 

10   task = q->ap[b % q->size]; 

11   if (b > t) 

12      return task 

13   if (!CAS(&top, t, t+1)) 

14      return EMPTY; 

15   bottom = t + 1; 

16   return task; 

17  } 

1  void push(int task) { 

2   long b = bottom; 

3   long t = top; 

4   item_t * q = wsq; 

5   if (b – t ≥ q->size – 1) { 

6       wsq = expand(); 

7       q = wsq; 

8   } 

9   q->ap[b % q->size] = task; 

 

10   bottom = b + 1; 

11 } 

1  int steal() { 

2   long t = top; 

 

3   long b = bottom; 

 

4   item_t * q = wsq; 

5   if (t >= b) 

6       return EMPTY; 

7   task = q->ap[t % q->size]; 

 

8   if (!CAS(&top, t, t+1)) 

9       return ABORT; 

10   return task; 

11 } 
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   Goal 

 Help the programmer place fences in the 
program 

 Find optimal fence placement 

 

 Principle 

 Restrict non-determinism s.t. program stays 
within set of safe executions 

 



Our Approach: Overview 

 P’ satisfies the specification S under M 

FENDER 

Program 
P 

Specification 
S 

Memory 
Model  

M 

Program P’ 
with  

Fences 



Our Approach: Recipe 

 Compute reachable states for the program 

 (sometimes under a bound) 

 

 Compute constraints on execution that 
guarantee that all “bad states” are avoided 

 

 Implement the constraints with fences 
 

 



      Flow of Synthesis 

Abstract Interpretation builds state space 

Synthesis algorithm builds a repair formula 

 

SAT solver finds minimal solutions 

Implement solutions with synchronization 

program 

spec 

abstraction 

New 
program 



Our Approach: Ingredients 

 Operational semantics for weak memory 
models 

 

 An algorithm for finding fence constraints 

 

 An algorithm for implementing fence 
constraints as fences in the program 

 

 



 An ongoing research topic (e.g., Sewell et al.) 

 Building a formal model by reverse engineering decisions 
made by hardware designers 

 

TSO 

PSO 

IA-32 Alpha 

RMO 

390 

SC 

Operational Semantics for WMM 



Relaxation WR 
Order 

WW 
Order 

RRW 
Order 

R others’ 
W early 

R own W  
early 

SC  

IBM 370  

TSO   

PSO    
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RMO     

PowerPC      

Operational Semantics for WMM 

Classification due to Adve et al. IEEE Computer ‘95 
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PowerPC      

Operational Semantics for WMM 

Classification due to Adve et al. IEEE Computer ‘95 



Operational Semantics for WMM 

 Challenges 

 Model store buffers 

 Model execution buffers  

 Variety of re-ordering rules 

 

 Semantics on board 



Operational Semantics: State 

Processor B 
B1: R2 = Y 
B2: R1 = X 

Processor A 
A1: X = 1 
A2: Y = 1 

Initially X = Y = R1 = R2 = 0 

A2:Y = 1 

A1:X = 1 

B2:R1 = X 

B1:R2 = Y 

X = 0 
Y = 0 

R1 = 0 
R2 = 0 



Operational Semantics: Transition 

A1:X = 1 B2:R1 = X 

B1:R2 = Y 

A2 

Processor B 
B1: R2 = Y 
B2: R1 = X 

Processor A 
A1: X = 1 
A2: Y = 1 

Initially X = Y = R1 = R2 = 0 

A2:Y = 1 

A1:X = 1 

B2:R1 = X 

B1:R2 = Y 

X = 0 
Y = 0 

R1 = 0 
R2 = 0 

X = 0 
Y = 1 

R1 = 0 
R2 = 0 



Compute Reachable States 

(0,0,0,0) 
[A1,A2] 
[B1,B2] 

(1,0,0,0) 
[A2] 

[B1,B2] 

(0,1,0,0) 
[A1] 

[B1,B2] 

(0,0,0,0) 
[A1,A2] 

[B2] 

(0,0,0,0) 
[A1,A2] 

[B1] 

(1,1,0,0) 
[] 

[B1,B2] 

(0,1,0,1) 
[A1] 
[B2] 

(0,1,0,0) 
[A1] 
[B1] 

(1,1,0,1) 
[] 

[B2] 

(0,1,0,1) 
[A1] 

[] 

(1,1,1,1) 
[] 
[] 

(1,1,0,1) 
[] 
[] 

A1 A2 B2 B1 

A1 

A1 

A1 

B1 B2 

B2 

B2 

A2 A2 

Error state 

(x,y,r1,r2) 
EB1 
EB2 

legend 

Specification  
at final state 
(R1 = 0  R2 = 1) 
 

initial 



Avoiding a State 

 To avoid a state 

 Avoid all incoming transitions 

 

 To avoid an incoming transition 

 Either avoid the transition itself 

 Or avoid the source state 
 

 



Avoidable Transitions 

 Execution buffer is ordered 

 A transition not executing first instruction in the 
execution buffer can be avoided 

 By forcing a different transition to execute 

 

A4:W = 1 

A3:Z = 1 

A2:Y = 1 

A1:X = 1 
Processor A 
A1: X = 1 
A2: Y = 1 
A3: Z = 1 
A4: W = 1 
 

A1 
A2 

A3 

A4 



Avoidable Transitions 

 Execution buffer is ordered 

 A transition not executing first instruction in the 
execution buffer can be avoided 

 By forcing a different transition to execute 

 

A4:W = 1 

A3:Z = 1 

A2:Y = 1 

A1:X = 1 
Processor A: 
A1: X = 1 
A2: Y = 1 
A3: Z = 1 
A4: W = 1 
 

A1 
A2 

A3 

A4 



Avoidable Transitions 

 To avoid A3 in this state 

 Force A1 to execute before A3 

 Or force A2 to execute before A3 

 

 Language of ordering constraints 

 A1 < A3  A2 < A3 

 

 

A4:W = 1 

A3:Z = 1 

A2:Y = 1 

A1:X = 1 
Processor A: 
A1: X = 1 
A2: Y = 1 
A3: Z = 1 
A4: W = 1 
 

A1 
A2 

A3 

A4 



Computing Avoid Formulae 

 Ordering predicates  

 l1 < l2 

 l1 must execute before l2 

 Ordering constraints are (positive) Boolean 
combinations of ordering predicates 

 Fixed-point computation computes an avoid 
formula for every state 

 Final constraints is conjunction avoiding all 
“bad states” 



Back to Our Example 

(0,0,0,0) 
[A1,A2] 
[B1,B2] 

false 

A1 

(0,1,0,0) 
[A1] 

[B1,B2] 
A1 < A2 

(0,0,0,0) 
[A1,A2] 

[B1] 
B1 < B2 

(1,0,0,0) 
[A2] 
[B1] 

B1 < B2 

(0,1,0,0) 
[A1] 
[B1] 

A1 < A2  B1 < B2 

(0,1,0,1) 
[A1] 
[B2] 

A1 < A2 

(1,1,0,0) 
[A1] 

[] 
A1 < A2 

(1,1,0,0) 
[] 

[B1] 
B1 < B2 

(1,1,0,1) 
[] 
[] 

A1 < A2  B1 < B2 

A1 

A1 

A2 

A2 

A2 

B1 

B1 

B1 

B2 

B2 

B2 

initial 



Fence Placement 

Processor B 
 
B1: R2 = Y 
fence(“load-load”) 
B2: R1 = X 

Processor A 
 
A1: X = 1 
fence(“store-store”) 
A2: Y = 1 

A1 < A2  B1 < B2 

? 



Fence Placement 

 Trivial in the previous example 

 Satisfying assignment to the ordering constraint 

 Every ordering predicate realized as a fence 

 Only had to choose fence type 

 

 Find minimal number of fences 

 Minimal satisfying assignments? 

 (obviously?) not good enough due to transitive 
dependencies 



Fence Placement 

L1: STORE X, 1 

L2: LOAD R1, Y 

L3: LOAD R2, Y 

L4: LOAD R3, Y 

L5: STORE Z, 1 

 

Constraint: L1 < L5 



Fence Placement 

L1: STORE X, 1 

L2: LOAD R1, Y 

L3: LOAD R2, Y 

L4: LOAD R3, Y 

L5: STORE Z, 1 

 

Constraint: L1 < L5  L2 < L5 



Fence Placement 

 A fence placed on every  
CFG path between 
ordered statements 

 

 Fence types 

 Full 

 Partial (e.g., store-load) 

L1 

L2 

L3 

L4 

L5 

L6 

L1 < L6  L3 < L6 



Evaluation 

 Pick a data structure  

 Preferably – one with known correct fences 

 Pick a “reasonable” set of clients 

 Intuition 

 Exhaustive up to some bound 

 Run 

 Examine results 

 

 



Results 



Performance 



Optimization and Scaling 

 Order of iteration 

 For acyclic graphs, we have a simple recursive 
algorithm 

 Constraints are shared 

 For several “instances” of the same inlined 
function 

 Between processors 

 “Safe State” pruning 
 

 



Sources of Unboundedness  

 Unbounded heap 

 

 Unbounded execution buffer 

 



  Basic Recipe 

 Compute reachable states of the program 

 

 Compute constraints on execution that 
guarantee that all “bad states” are avoided 

 

 Implement the constraints with fences 
 

 



  Basic Recipe 

 Compute reachable states of the program 

 

 Compute constraints on execution that 
guarantee that all “bad states” are avoided 

 

 Implement the constraints with fences 
 

 

Bad News [Atig et. al POPL’10] 
 

Reachability undecidable for RMO 
 

Non-primitive recursive complexity for 
TSO/PSO 

 



… P0 

Main 
Memory 

… P1 

… 

… 

… 

… 

X 
Y 
Z 

X 
Y 
Z 

Example: store-buffer models 

61 

 TSO & PSO 

 Intel x86 is ~ TSO 

 

 Memory Fences 

 Restore order 

 

 Every store before 
the fence becomes 
globally visible 
before anything 
after the fence 
executes 

store flush 

load 

fence 



 Mutual Exclusion Algorithm 

62 

Process 0: 
 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 



Store Buffers 

63 

… P0 

Main 
Memory 

… P1 

… 

… 

… 

… 

ent0 
ent1 
turn 

ent0 
ent1 
turn 



Unbounded Store Buffers… 

64 

 Even for very simple patterns 

 e.g. spin-loops with writes in loop body 

 

 flag := true  

while other_flag = true {  

  flag := false  

  //Do something 

  flag := true  

}  

true 



Unbounded Store Buffers… 

65 

 Even for very simple patterns 

 e.g. spin-loops with writes in loop body 

 

 flag := true  

while other_flag = true {  

  flag := false  

  //Do something 

  flag := true  

}  

true false 



Unbounded Store Buffers… 

66 

 Even for very simple patterns 

 e.g. spin-loops with writes in loop body 

 

 flag := true  

while other_flag = true {  

  flag := false  

  //Do something 

  flag := true  

}  

true false true 



Unbounded Store Buffers… 

67 

 Even for very simple patterns 

 e.g. spin-loops with writes in loop body 

 

 flag := true  

while other_flag = true {  

  flag := false  

  //Do something 

  flag := true  

}  

true false true false 



Unbounded Store Buffers… 

68 

 Even for very simple patterns 

 e.g. spin-loops with writes in loop body 

 

 flag := true  

while other_flag = true {  

  flag := false  

  //Do something 

  flag := true  

}  

true false true false 



What can we do? 

 Under-approximate 

 Bound the length of execution buffers (previously 
mentioned). Implies a bound on state space 

 Bound context switches (other work) 

 Dynamic synthesis (PLDI’12) 

 

 Over-approximate  

 Sound abstraction of buffer content, next 

69 



Abstract Interpretation for RMM 

70 

 

 

Main Idea: Bounded over-approximation of 
unbounded buffers 

 

 

 



First Attempt: Set Abstraction 

71 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 



First Attempt: Set Abstraction 

72 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

… P0 

Main 
Memory 

… P1 

… 

… 

… 

… 

ent0 
ent1 
turn 

ent0 
ent1 
turn 



First Attempt: Set Abstraction 

73 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{ }  
{ }  
{ }  



First Attempt: Set Abstraction 

74 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{true}  

{ }  
{ }  



First Attempt: Set Abstraction 

75 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{ } 

{ }  
{ }  



First Attempt: Set Abstraction 

76 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{1}  

{ } 
{ }  



First Attempt: Set Abstraction 

77 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{ } 

{ }  
{ }  



First Attempt: Set Abstraction 

78 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{ false } 

{ }  
{ }  



First Attempt: Set Abstraction 

79 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{ false, true } 

{ }  
{ }  



First Attempt: Set Abstraction 

80 
 Abstract each store buffer as a set 

Process 0: 
while(true) { 
  store ent0 = true; 
  fence;  
  store turn = 1; 
  fence; 
  do { 
    load e = ent1; 
    load t = turn; 
  } while(e == true && t == 1); 
  //critical section here 
  store ent0 = false; 
} 

Process 1: 
while(true) { 
  store ent1 = true; 
  fence; 
  store turn = 0; 
  fence; 
  do { 
    load e = ent0; 
    load t = turn; 
  } while(e == true && t == 0); 
  //critical section here 
  store ent1 = false; 
} 
 

P0 

Main 
Memory 

P1 

ent0 
ent1 
turn 

ent0 
ent1 
turn 

{ } 
{ } 
{ } 

{ false, true } 

{ }  
{ }  



Second Attempt: record most recent value 

81 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 

{ } 

{ } 

X = 0 



Second Attempt: record most recent value 

82 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 { } 

{ 1 } 

X = 0 



Second Attempt: record most recent value 

83 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 { } 

{ 1 } 

X = 1 

flush (1st time) 



Second Attempt: record most recent value 

84 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 { } 

{ 1 } 

X = 1 

flush (1st time) 



Second Attempt: record most recent value 

85 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 

{ 1 } 

X = 1 
{2  } 

flush (1st time) 



Second Attempt: record most recent value 

86 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 

{ 1 } 

X = 2 

flush (1st time) 

{ } 



Second Attempt: record most recent value 

87 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 

{ 1 } 

X = 1 

flush (1st time) 

{ } 

flush (2nd time) 



Second Attempt: record most recent value 

88 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 

{ 1 } 

X = 1 

flush (1st time) 

{ } 

flush (2nd time) 



Second Attempt: record most recent value 

89 

Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 

{ 1 } 

X = 1 

flush (1st time) 

{ } 

flush (2nd time) 



Second Attempt: record most recent value 
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Process 0 
 
X := 1 

Process 1 
 
while (X != 1) { nop }  
X := 2 
fence   
e := X 
assert e == 2; 

Initially X == 0 

P0 
Main 

Memory 
 
 
 
 
 
 

P1 

{ 1 } 

X = 1 

flush (1st time) 

{ } 

flush (2nd time) 



Abstract Memory Models - Requirements 

 Intra-process coherence: a process should see 
the most recent value it wrote 
 

 Preserve fence semantics 
 

 Partial inter-process coherence: preserve as 
much order information as feasible (bounded) 
 Enable strong flushes 

 
 Sound 
 Simple construction! 

91 



Partial Coherence Abstractions 

92 
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Partial Coherence Abstractions 
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Partial Coherence Abstractions 
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P0 

Main 
Memory 

P1 

ent0 

turn 

ent0 

ent1 
turn 

Recent 
value 

Bounded 
length k 

Unordered 
elements 

ent1 

Allows precise fence semantics 
 
Allows precise loads from buffer 



Partial Coherence Abstractions 
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P0 

Main 
Memory 

P1 

ent0 

turn 

ent0 

ent1 
turn 

Recent 
value 

Bounded 
length k 

Unordered 
elements 

ent1 

Allows precise fence semantics 
 
Allows precise loads from buffer 

Keeps the analysis precise  
for “normal” programs 



Partial Coherence Abstractions 
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P0 

Main 
Memory 

P1 

ent0 

turn 

ent0 

ent1 
turn 

Recent 
value 

Bounded 
length k 

Unordered 
elements 

ent1 

Allows precise fence semantics 
 
Allows precise loads from buffer 

Keeps the analysis precise  
for “normal” programs 

Fallback for soundness 



Intuition 

 Making unbounded number of writes to a 
memory location without a flush? 

 Seems very esoteric 

 Your program is suspicious 

 

97 

flag := true  

while other_flag = true {  

  flag := false  

  //Do something 

  flag := true  

}  



Adjusted Recipe 

98 
 Compute (abstract) reachable states for 

the program using partial-coherence 
abstraction 

 

 Compute constraints on execution that 
guarantee that all “bad states” are avoided 

 

 Implement the constraints with fences 

 

 



      Flow of Synthesis 

Abstract Interpretation builds state space 

Synthesis algorithm builds a repair formula 

 

SAT solver finds minimal solutions 

Implement solutions with synchronization 

program 

spec 

abstraction 

New 
program 



program 

specification 

Abstract 
counter 
example 

abstraction 
Abstraction 
Refinement  

 

Verify 

Program 
Restriction 

P’ 

Abstract 
counter 
example 
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  Thinking Roadmap 



program 

specification 

Abstract 
counter 
example 

abstraction 
Abstraction 
Refinement 

Change the program to match the abstraction 

 

 

Verify 

Program 
Restriction 

P’ 

Abstract 
counter 
example 
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  Thinking Roadmap 



program 

specification 

Abstract 
counter 
example 

abstraction 
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   More information 

 

 My group @ ETH Zurich:  http://www.srl.inf.ethz.ch/ 

 

 Fender: http://practicalsynthesis.org/fender/ 

 

 Workshops: 

 PSY:  http://practicalsynthesis.org/psy2012/ 

 Dagstuhl: 
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152 

http://www.srl.inf.ethz.ch/
http://www.srl.inf.ethz.ch/
http://www.srl.inf.ethz.ch/
http://practicalsynthesis.org/psy2012/
http://practicalsynthesis.org/psy2012/
http://practicalsynthesis.org/psy2012/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152


 thanks for your attention 

merci pour votre attention  


