
 MACHINE-ASSISTED
 CONCURRENT PROGRAMMING

 Martin Vechev

1

 ETH Zürich

 (Lecture 2)

 Plan

• Setting

• Program analysis by abstract interpretation

• Synthesis based on abstract interpretation

• Analysis + synthesis for weak memory models

 Instantiate for Concurrency

program

specification

Abstract
counter
example

abstraction
Abstraction
Refinement 



Verify

Program
Restriction

P’

Abstract
counter
example

3

P  S


 P’  S 

P  S


 P  S ’

 Instantiate for Concurrency

program

specification

Abstract
counter
example

abstraction
Abstraction
Refinement

Change the program to match the abstraction





Verify

Program
Restriction

P’

Abstract
counter
example

4

P  S


 P’  S 

P  S


 P  S ’

 Instantiate for Concurrency

program

specification

Abstract
counter
example

abstraction
Abstraction
Refinement

Change the program to match the abstraction





Verify

Program
Restriction

Implement P’

Abstract
counter
example

5

P  S


 P’  S 

P  S


 P  S ’

Another Interesting Area

 Relaxed Memory Models

 Provided by modern chips to improve performance

Textbook Example: Dekker’s Algorithm

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Specification: mutual exclusion over critical section

Textbook Example: Dekker’s Algorithm

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Specification: mutual exclusion over critical section

Textbook Example: Dekker’s Algorithm

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Specification: mutual exclusion over critical section

Beyond Textbooks: Weak Memory Models

 Re-ordering of operations

 Non-atomic stores

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Beyond Textbooks: Weak Memory Models

 Re-ordering of operations

 Non-atomic stores

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Beyond Textbooks: Weak Memory Models

 Re-ordering of operations

 Non-atomic stores

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Beyond Textbooks: Weak Memory Models

 Re-ordering of operations

 Non-atomic stores

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Beyond Textbooks: Weak Memory Models

 Re-ordering of operations

 Non-atomic stores

p0:

flag[0] := true

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Fences

 Enforce order… at a cost
 Fences are expensive

 10s-100s of cycles
 collateral damage (e.g., prevent compiler opts)

 example: removing a single fence yields 3x
speedup in a work-stealing queue

 Required fences depend on memory model

 Where should I put fences?

Where should I put fences?

On the one hand, memory barriers are expensive (100s of cycles,
maybe more), and should be used only when necessary.

On the other, synchronization bugs can be very difficult to track
down, so memory barriers should be used liberally, rather than
relying on complex platform-specific guarantees about limits to
memory instruction reordering.

 – Herlihy and Shavit

Easy!

p0:

flag[0] := true

fence

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

fence

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Easy!

p0:

flag[0] := true

fence

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

fence

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

Easy!

p0:

flag[0] := true

fence

while flag[1] = true {

 if turn ≠ 0 {

 flag[0] := false

 while turn ≠ 0 { }

 flag[0] := true

 }

}

// critical section

turn := 1

flag[0] := false

p1:

flag[1] := true

fence

while flag[0] = true {

 if turn ≠ 1 {

 flag[1] := false

 while turn ≠ 1 { }

 flag[1] := true

 }

}

// critical section

turn := 0

flag[1] := false

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

20

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

21

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

22

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

23

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

24

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

25

 fence

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

26

 fence

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

27

 fence

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

28

 fence

 fence

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

29

 fence

 fence

 fence

 fence

Chase-Lev Work-Stealing Queue

1 int take() {

2 long b = bottom – 1;

3 item_t * q = wsq;

4 bottom = b

5 long t = top

6 if (b < t) {

7 bottom = t;

8 return EMPTY;

9 }

10 task = q->ap[b % q->size];

11 if (b > t)

12 return task

13 if (!CAS(&top, t, t+1))

14 return EMPTY;

15 bottom = t + 1;

16 return task;

17 }

1 void push(int task) {

2 long b = bottom;

3 long t = top;

4 item_t * q = wsq;

5 if (b – t ≥ q->size – 1) {

6 wsq = expand();

7 q = wsq;

8 }

9 q->ap[b % q->size] = task;

10 bottom = b + 1;

11 }

1 int steal() {

2 long t = top;

3 long b = bottom;

4 item_t * q = wsq;

5 if (t >= b)

6 return EMPTY;

7 task = q->ap[t % q->size];

8 if (!CAS(&top, t, t+1))

9 return ABORT;

10 return task;

11 }

30

 fence

 fence

 fence

 fence

 fence

Chase-Lev Work-Stealing Queue

 Goal

 Help the programmer place fences in the
program

 Find optimal fence placement

 Principle

 Restrict non-determinism s.t. program stays
within set of safe executions

Our Approach: Overview

 P’ satisfies the specification S under M

FENDER

Program
P

Specification
S

Memory
Model

M

Program P’
with

Fences

Our Approach: Recipe

 Compute reachable states for the program

 (sometimes under a bound)

 Compute constraints on execution that
guarantee that all “bad states” are avoided

 Implement the constraints with fences

 Flow of Synthesis

Abstract Interpretation builds state space

Synthesis algorithm builds a repair formula

SAT solver finds minimal solutions

Implement solutions with synchronization

program

spec

abstraction

New
program

Our Approach: Ingredients

 Operational semantics for weak memory
models

 An algorithm for finding fence constraints

 An algorithm for implementing fence
constraints as fences in the program

 An ongoing research topic (e.g., Sewell et al.)

 Building a formal model by reverse engineering decisions
made by hardware designers

TSO

PSO

IA-32 Alpha

RMO

390

SC

Operational Semantics for WMM

Relaxation WR
Order

WW
Order

RRW
Order

R others’
W early

R own W
early

SC 

IBM 370 

TSO  

PSO   

Alpha    

RMO    

PowerPC     

Operational Semantics for WMM

Classification due to Adve et al. IEEE Computer ‘95

Relaxation WR
Order

WW
Order

RRW
Order

R others’
W early

R own W
early

SC 

IBM 370 

TSO  

PSO   

Alpha    

RMO    

PowerPC     

Operational Semantics for WMM

Classification due to Adve et al. IEEE Computer ‘95

Operational Semantics for WMM

 Challenges

 Model store buffers

 Model execution buffers

 Variety of re-ordering rules

 Semantics on board

Operational Semantics: State

Processor B
B1: R2 = Y
B2: R1 = X

Processor A
A1: X = 1
A2: Y = 1

Initially X = Y = R1 = R2 = 0

A2:Y = 1

A1:X = 1

B2:R1 = X

B1:R2 = Y

X = 0
Y = 0

R1 = 0
R2 = 0

Operational Semantics: Transition

A1:X = 1 B2:R1 = X

B1:R2 = Y

A2

Processor B
B1: R2 = Y
B2: R1 = X

Processor A
A1: X = 1
A2: Y = 1

Initially X = Y = R1 = R2 = 0

A2:Y = 1

A1:X = 1

B2:R1 = X

B1:R2 = Y

X = 0
Y = 0

R1 = 0
R2 = 0

X = 0
Y = 1

R1 = 0
R2 = 0

Compute Reachable States

(0,0,0,0)
[A1,A2]
[B1,B2]

(1,0,0,0)
[A2]

[B1,B2]

(0,1,0,0)
[A1]

[B1,B2]

(0,0,0,0)
[A1,A2]

[B2]

(0,0,0,0)
[A1,A2]

[B1]

(1,1,0,0)
[]

[B1,B2]

(0,1,0,1)
[A1]
[B2]

(0,1,0,0)
[A1]
[B1]

(1,1,0,1)
[]

[B2]

(0,1,0,1)
[A1]

[]

(1,1,1,1)
[]
[]

(1,1,0,1)
[]
[]

A1 A2 B2 B1

A1

A1

A1

B1 B2

B2

B2

A2 A2

Error state

(x,y,r1,r2)
EB1
EB2

legend

Specification
at final state
(R1 = 0  R2 = 1)

initial

Avoiding a State

 To avoid a state

 Avoid all incoming transitions

 To avoid an incoming transition

 Either avoid the transition itself

 Or avoid the source state

Avoidable Transitions

 Execution buffer is ordered

 A transition not executing first instruction in the
execution buffer can be avoided

 By forcing a different transition to execute

A4:W = 1

A3:Z = 1

A2:Y = 1

A1:X = 1
Processor A
A1: X = 1
A2: Y = 1
A3: Z = 1
A4: W = 1

A1
A2

A3

A4

Avoidable Transitions

 Execution buffer is ordered

 A transition not executing first instruction in the
execution buffer can be avoided

 By forcing a different transition to execute

A4:W = 1

A3:Z = 1

A2:Y = 1

A1:X = 1
Processor A:
A1: X = 1
A2: Y = 1
A3: Z = 1
A4: W = 1

A1
A2

A3

A4

Avoidable Transitions

 To avoid A3 in this state

 Force A1 to execute before A3

 Or force A2 to execute before A3

 Language of ordering constraints

 A1 < A3  A2 < A3

A4:W = 1

A3:Z = 1

A2:Y = 1

A1:X = 1
Processor A:
A1: X = 1
A2: Y = 1
A3: Z = 1
A4: W = 1

A1
A2

A3

A4

Computing Avoid Formulae

 Ordering predicates

 l1 < l2

 l1 must execute before l2

 Ordering constraints are (positive) Boolean
combinations of ordering predicates

 Fixed-point computation computes an avoid
formula for every state

 Final constraints is conjunction avoiding all
“bad states”

Back to Our Example

(0,0,0,0)
[A1,A2]
[B1,B2]

false

A1

(0,1,0,0)
[A1]

[B1,B2]
A1 < A2

(0,0,0,0)
[A1,A2]

[B1]
B1 < B2

(1,0,0,0)
[A2]
[B1]

B1 < B2

(0,1,0,0)
[A1]
[B1]

A1 < A2  B1 < B2

(0,1,0,1)
[A1]
[B2]

A1 < A2

(1,1,0,0)
[A1]

[]
A1 < A2

(1,1,0,0)
[]

[B1]
B1 < B2

(1,1,0,1)
[]
[]

A1 < A2  B1 < B2

A1

A1

A2

A2

A2

B1

B1

B1

B2

B2

B2

initial

Fence Placement

Processor B

B1: R2 = Y
fence(“load-load”)
B2: R1 = X

Processor A

A1: X = 1
fence(“store-store”)
A2: Y = 1

A1 < A2  B1 < B2

?

Fence Placement

 Trivial in the previous example

 Satisfying assignment to the ordering constraint

 Every ordering predicate realized as a fence

 Only had to choose fence type

 Find minimal number of fences

 Minimal satisfying assignments?

 (obviously?) not good enough due to transitive
dependencies

Fence Placement

L1: STORE X, 1

L2: LOAD R1, Y

L3: LOAD R2, Y

L4: LOAD R3, Y

L5: STORE Z, 1

Constraint: L1 < L5

Fence Placement

L1: STORE X, 1

L2: LOAD R1, Y

L3: LOAD R2, Y

L4: LOAD R3, Y

L5: STORE Z, 1

Constraint: L1 < L5  L2 < L5

Fence Placement

 A fence placed on every
CFG path between
ordered statements

 Fence types

 Full

 Partial (e.g., store-load)

L1

L2

L3

L4

L5

L6

L1 < L6  L3 < L6

Evaluation

 Pick a data structure

 Preferably – one with known correct fences

 Pick a “reasonable” set of clients

 Intuition

 Exhaustive up to some bound

 Run

 Examine results

Results

Performance

Optimization and Scaling

 Order of iteration

 For acyclic graphs, we have a simple recursive
algorithm

 Constraints are shared

 For several “instances” of the same inlined
function

 Between processors

 “Safe State” pruning

Sources of Unboundedness

 Unbounded heap

 Unbounded execution buffer

 Basic Recipe

 Compute reachable states of the program

 Compute constraints on execution that
guarantee that all “bad states” are avoided

 Implement the constraints with fences

 Basic Recipe

 Compute reachable states of the program

 Compute constraints on execution that
guarantee that all “bad states” are avoided

 Implement the constraints with fences

Bad News [Atig et. al POPL’10]

Reachability undecidable for RMO

Non-primitive recursive complexity for
TSO/PSO

… P0

Main
Memory

… P1

…

…

…

…

X
Y
Z

X
Y
Z

Example: store-buffer models

61

 TSO & PSO

 Intel x86 is ~ TSO

 Memory Fences

 Restore order

 Every store before
the fence becomes
globally visible
before anything
after the fence
executes

store flush

load

fence

 Mutual Exclusion Algorithm

62

Process 0:

while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:

while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

Store Buffers

63

… P0

Main
Memory

… P1

…

…

…

…

ent0
ent1
turn

ent0
ent1
turn

Unbounded Store Buffers…

64

 Even for very simple patterns

 e.g. spin-loops with writes in loop body

 flag := true

while other_flag = true {

 flag := false

 //Do something

 flag := true

}

true

Unbounded Store Buffers…

65

 Even for very simple patterns

 e.g. spin-loops with writes in loop body

 flag := true

while other_flag = true {

 flag := false

 //Do something

 flag := true

}

true false

Unbounded Store Buffers…

66

 Even for very simple patterns

 e.g. spin-loops with writes in loop body

 flag := true

while other_flag = true {

 flag := false

 //Do something

 flag := true

}

true false true

Unbounded Store Buffers…

67

 Even for very simple patterns

 e.g. spin-loops with writes in loop body

 flag := true

while other_flag = true {

 flag := false

 //Do something

 flag := true

}

true false true false

Unbounded Store Buffers…

68

 Even for very simple patterns

 e.g. spin-loops with writes in loop body

 flag := true

while other_flag = true {

 flag := false

 //Do something

 flag := true

}

true false true false

What can we do?

 Under-approximate

 Bound the length of execution buffers (previously
mentioned). Implies a bound on state space

 Bound context switches (other work)

 Dynamic synthesis (PLDI’12)

 Over-approximate

 Sound abstraction of buffer content, next

69

Abstract Interpretation for RMM

70

Main Idea: Bounded over-approximation of
unbounded buffers

First Attempt: Set Abstraction

71
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

First Attempt: Set Abstraction

72
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

… P0

Main
Memory

… P1

…

…

…

…

ent0
ent1
turn

ent0
ent1
turn

First Attempt: Set Abstraction

73
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{ }
{ }
{ }

First Attempt: Set Abstraction

74
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{true}

{ }
{ }

First Attempt: Set Abstraction

75
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{ }

{ }
{ }

First Attempt: Set Abstraction

76
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{1}

{ }
{ }

First Attempt: Set Abstraction

77
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{ }

{ }
{ }

First Attempt: Set Abstraction

78
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{ false }

{ }
{ }

First Attempt: Set Abstraction

79
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{ false, true }

{ }
{ }

First Attempt: Set Abstraction

80
 Abstract each store buffer as a set

Process 0:
while(true) {
 store ent0 = true;
 fence;
 store turn = 1;
 fence;
 do {
 load e = ent1;
 load t = turn;
 } while(e == true && t == 1);
 //critical section here
 store ent0 = false;
}

Process 1:
while(true) {
 store ent1 = true;
 fence;
 store turn = 0;
 fence;
 do {
 load e = ent0;
 load t = turn;
 } while(e == true && t == 0);
 //critical section here
 store ent1 = false;
}

P0

Main
Memory

P1

ent0
ent1
turn

ent0
ent1
turn

{ }
{ }
{ }

{ false, true }

{ }
{ }

Second Attempt: record most recent value

81

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1

{ }

{ }

X = 0

Second Attempt: record most recent value

82

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1 { }

{ 1 }

X = 0

Second Attempt: record most recent value

83

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1 { }

{ 1 }

X = 1

flush (1st time)

Second Attempt: record most recent value

84

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1 { }

{ 1 }

X = 1

flush (1st time)

Second Attempt: record most recent value

85

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1

{ 1 }

X = 1
{2 }

flush (1st time)

Second Attempt: record most recent value

86

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1

{ 1 }

X = 2

flush (1st time)

{ }

Second Attempt: record most recent value

87

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1

{ 1 }

X = 1

flush (1st time)

{ }

flush (2nd time)

Second Attempt: record most recent value

88

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1

{ 1 }

X = 1

flush (1st time)

{ }

flush (2nd time)

Second Attempt: record most recent value

89

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1

{ 1 }

X = 1

flush (1st time)

{ }

flush (2nd time)

Second Attempt: record most recent value

90

Process 0

X := 1

Process 1

while (X != 1) { nop }
X := 2
fence
e := X
assert e == 2;

Initially X == 0

P0
Main

Memory

P1

{ 1 }

X = 1

flush (1st time)

{ }

flush (2nd time)

Abstract Memory Models - Requirements

 Intra-process coherence: a process should see
the most recent value it wrote

 Preserve fence semantics

 Partial inter-process coherence: preserve as
much order information as feasible (bounded)
 Enable strong flushes

 Sound
 Simple construction!

91

Partial Coherence Abstractions

92

… P0

Main
Memory

… P1

…

…

…

…

ent0
ent1
turn

ent0
ent1
turn

Partial Coherence Abstractions

93

P0

Main
Memory

P1

ent0

turn

ent0

ent1
turn

Recent
value

Bounded
length k

Unordered
elements

ent1

Partial Coherence Abstractions

94

P0

Main
Memory

P1

ent0

turn

ent0

ent1
turn

Recent
value

Bounded
length k

Unordered
elements

ent1

Allows precise fence semantics

Allows precise loads from buffer

Partial Coherence Abstractions

95

P0

Main
Memory

P1

ent0

turn

ent0

ent1
turn

Recent
value

Bounded
length k

Unordered
elements

ent1

Allows precise fence semantics

Allows precise loads from buffer

Keeps the analysis precise
for “normal” programs

Partial Coherence Abstractions

96

P0

Main
Memory

P1

ent0

turn

ent0

ent1
turn

Recent
value

Bounded
length k

Unordered
elements

ent1

Allows precise fence semantics

Allows precise loads from buffer

Keeps the analysis precise
for “normal” programs

Fallback for soundness

Intuition

 Making unbounded number of writes to a
memory location without a flush?

 Seems very esoteric

 Your program is suspicious

97

flag := true

while other_flag = true {

 flag := false

 //Do something

 flag := true

}

Adjusted Recipe

98
 Compute (abstract) reachable states for

the program using partial-coherence
abstraction

 Compute constraints on execution that
guarantee that all “bad states” are avoided

 Implement the constraints with fences

 Flow of Synthesis

Abstract Interpretation builds state space

Synthesis algorithm builds a repair formula

SAT solver finds minimal solutions

Implement solutions with synchronization

program

spec

abstraction

New
program

program

specification

Abstract
counter
example

abstraction
Abstraction
Refinement 



Verify

Program
Restriction

P’

Abstract
counter
example

100

 Thinking Roadmap

program

specification

Abstract
counter
example

abstraction
Abstraction
Refinement

Change the program to match the abstraction





Verify

Program
Restriction

P’

Abstract
counter
example

101

 Thinking Roadmap

program

specification

Abstract
counter
example

abstraction
Abstraction
Refinement

Change the program to match the abstraction





Verify

Program
Restriction

Implement P’

Abstract
counter
example

102

 Thinking Roadmap

 More information

 My group @ ETH Zurich: http://www.srl.inf.ethz.ch/

 Fender: http://practicalsynthesis.org/fender/

 Workshops:

 PSY: http://practicalsynthesis.org/psy2012/

 Dagstuhl:
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152

http://www.srl.inf.ethz.ch/
http://www.srl.inf.ethz.ch/
http://www.srl.inf.ethz.ch/
http://practicalsynthesis.org/psy2012/
http://practicalsynthesis.org/psy2012/
http://practicalsynthesis.org/psy2012/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12152

 thanks for your attention

merci pour votre attention 

