The Clx and C++11 concurrency model

Mark Batty
University of Cambridge

January 16, 2013

C11 and C++11 Memory Model

A DRF model with the option to expose relaxed behaviour
in exchange for high performance.

C11 takes it's model directly from C++11.

Allows for relaxed behaviour on target architectures, and
compiler optimisation.

C++11: the next C++

C++11: the next C++

1300 page prose specification defined by the ISO.

C++11: the next C++

1300 page prose specification defined by the ISO.

The design is a detailed compromise:

o hardware/compiler implementability
o useful abstractions

e broad spectrum of programmers

C++11: the next C++

1300 page prose specification defined by the ISO.

The design is a detailed compromise:

o hardware/compiler implementability
o useful abstractions

e broad spectrum of programmers

We fixed serious problems in both C++11 and Clx, both
now finalised.

What does C++11 look like?

std::atomic<int> flag0(0),flagl(0),turn(0);

void lock(unsigned index) {
if (0 == index) {
flagO.store(1l, std::memory_order_relaxed) ;
turn.exchange(l, std::memory_order_acq_rel);
while (flagl.load(std::memory_order_acquire)

&% 1 == turn.load(std::memory_order_relaxed))
std::this_thread::yield();
} else {

flagl.store(1, std::memory_order_relaxed);
turn.exchange (0, std::memory_order_acq_rel);
while (flag0.load(std::memory_order_acquire)
&% 0 == turn.load(std::memory_order_relaxed))
std::this_thread::yield();
}

void unlock(unsigned index) {
if (0 == index) {
flag0.store(0, std::memory_order_release);
} else {
flagl.store(0, std::memory_order_release);

}

Atomic accesses take a n ordering parameter

From most relaxed to most like DRF-SC:

memory_order_relaxed
memory_order_release/memory_order_acquire
memory_order_release/memory_order_consume

memory_order_seq_cst

mo_seq-cst

The compiler must ensure that mo_seq_cst atomics have SC
semantics.

x.store(1l, mo_seq_cst); y.store(l, mo_seq_cst);
rl = y.load(mo_seq_cst); |r2 = x.load(mo_seq_cst);

The program above cannot end with r1 = r2 = 0.

mo_seq-cst

The compiler must ensure that mo_seq_cst atomics have SC
semantics.

x.store(1l, mo_seq_cst); y.store(l, mo_seq_cst);
rl = y.load(mo_seq_cst); |r2 = x.load(mo_seq_cst);

The program above cannot end with r1 = r2 = 0.

...s0, MP is forbidden over mo_seq_cst. So are all other relaxed
behaviours.

mo_release / mo_acquire

Supports fast implementation of the message passing idiom.

x =1; rl = y.load(mo_acquire);
y.store(l, mo_release); r2 = x;

The program above cannot end with r1 = 1 and r2 = 0.

mo_release / mo_acquire

Supports fast implementation of the message passing idiom.

x =1; rl = y.load(mo_acquire);
y.store(l, mo_release); r2 = x;
The program above cannot end with r1 = 1 and r2 = 0.

...s0, MP is forbidden using mo_release and mo_acquire. SB and
IRIW are allowed though.

mo_release / mo_consume

Supports faster implementation of the message passing idiom on
Power.

x =1; rl = y.load(mo_consume) ;
y.store(&x, mo_release); |r2 = *ri;

The program above cannot end with r1 = &x and r2 = 0.

The two loads must have an address dependency.

mo_relaxed

Very fast access, but also lots of strange behaviour.

rl = x.load(mo_relaxed); |r2 = y.load(mo_relaxed);
y.store(1l, mo_relaxed); x.store(1l, mo_relaxed);

The program above can end with r1 = 1 and r2 = 1.

mo_relaxed

Very fast access, but also lots of strange behaviour.

rl = x.load(mo_relaxed); |r2 = y.load(mo_relaxed);
y.store(1l, mo_relaxed); x.store(1l, mo_relaxed);

The program above can end with r1 = 1 and r2 = 1.

...50, LB is allowed using mo_relaxed. We will see that these
accesses are more relaxed than Power even.

The Clx/C++11 memory model

The Clx/C++11 memory model
@ sequential execution
@ simple concurrency
@ expert concurrency
@ very expert concurrency

A single threaded program

aW,,x=2

int main() { =0
int x = 2; <b
int y = 0;
y = (X==X); C: RnaX 2 d:R,, x=2
return 0; } \:b /sb

eW,,y=1

A single threaded program

int main() { if b:W,,y=0 rf
int x = 2;
int y = 0; sb sb

y = (x==x); cR,, x=2 d:R,, x=2

return 0; } .
sb sb

eW,y=1

The relations of a pre-execution

Each symbolic execution, E;, contains:
sb — sequenced before
asw — additional synchronizes with

dd — data-dependence

The relations of a pre-execution

Each symbolic execution, E;, contains:
sb — sequenced before
asw — additional synchronizes with

dd — data-dependence

Each full execution, Xj;, also has:
rf — reads from
sc — SC order

mo — modification order

A data race

int y, x = 2;
X=3; ‘y: (X==3);

a:W,,x=2
asw, rf
b:W,,x=3 cRy,x=2
sb

d:W,, y=0

A data race

int y, x = 2;
X=3; ‘y: (X==3);

a:W,,x=2
asw, rf
b:W,,x=3"c:R,, x=2
sb

d:W,, y=0

Simple concurrency: Decker's example and SC

atomic_int x = O;
atomic_int y 0;

x.store(1l, seq_cst); |y.store(l, seq_cst);
y.load(seq_cst); x.load(seq_cst);

Simple concurrency: Decker's example and SC

atomic_int x = O;
atomic_int y 0;

x.store(1l, seq_cst); |y.store(l, seq_cst);

y.load(seq_cst); x.load(seq_cst);
c:W, y=1 e:Wg. x=1
sb sb

d:Rsc x=0 f:Rcy=0

Simple concurrency: Decker's example and SC

atomic_int x = O;
atomic_int y 0;

x.store(1l, seq_cst); |y.store(l, seq_cst);
y.load(seq_cst); x.load(seq_cst);

cW, y=1 e:W. . x=1

d:Rsc x=0 f:Ry=1

SC atomics

Read the last write in SC order.

cWe y=1 e:W, . x=1
rf\
d:Rs. x=0 f:Rcy=1

Using only seq_cst reads and writes gives SC.

(Initialization is not seq_cst though...)

Expert concurrency: The release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(1l, release); r = Xx;
a:W,,x=1
sb
b:Wrel\
rf
c:Racqy=1
sb

d:R,;x=1

Expert concurrency: The release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(1l, release); r = Xx;
a:W,,x=1
sb
b:Wrel)l\k
SW
c:Racqy=1
sb

d:R,;x=1

Expert concurrency: The release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(1l, release); r = Xx;
a:W,,x=1
sb hb
bZWre| =1

c:RaCI y=1

4
d:R,;x=1

Expert concurrency: The release-acquire idiom

// receiver
while (0 == y.load(acquire));
r = x;

// sender
X = ...
y.store(1l, release);

a:W,,x=1

4
d:R,;x=1

simple—happens—before\

(sequenced-before synchronizes—with\

> U)t

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock(); m.lock();
X = ... r = X;

m.unlock();

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
sb¢ sb¢
d:W,,x=1 iR x=1

sb

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
sb¢ sb¢
d:W,,x=1 iR x=1

sb

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(); m.lock();
X = ... r = X;
m.unlock();
c:L mutex h:L mutex
v
sb sb
d:W,,x=1 iR x=1
sb sw

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(); m.lock();
X = ... r = X;
m.unlock();

c:L mutex h:L mutex

v
sb sb
d:W,,x=1 iR x=1

sb¢ hb

f:U mutex

Locks and unlocks

Unlocks and locks synchronise too:

int x, r;
mutex m;
m.lock(); m.lock();
X = ... r = X;
m.unlock();

c:L mutex h:L mutex

v
sb sb
d:W,,x=1 . iR x=1
sb ¢ hb

f:U mutex

Happens-before is key to the model

Non-atomic loads read the most recent write in
happens-before. (This is unique in DRF programs)

The story is more complex for atomics, as we shall see,
but we cannot read from the future, in happens-before.

Data races are defined as an absence of happens-before.

A data race

int y, x = 2;
X=3; ‘y: (X==3);

a:W,,x=2
asw, rf
b:W,,x=3"c:R,, x=2
sb

d:W,, y=0

Data race definition

let data_races actions hb =
{ (a, b) | V¥ a€actions beactions |
- (a=b) A
same_location a b A
(is_write a V is_write b) A
— (same_thread a b) A
- (is_atomic_action a A is_atomic_action b) A
- ((a, b) € hb Vv (b, a) € hb) }

A program with a data race has undefined behaviour.

Relaxed writes: load buffering

x.load(relaxed) ;
y.store(1l, relaxed);

y.load(relaxed) ;
x.store(1l, relaxed);

c:Rrlx x=1 e:Rrlx y=1

gt

d:Wrlx y=1 f:Wrlx x=1

No synchronisation cost, but weakly ordered.

Relaxed writes: independent reads, independent writes

atomic_int x
atomic_int y

0;
0;

x.store(1l, relaxed);

x.load(relaxed) ;
y.load(relaxed) ;

y.load(relaxed);
x.load(relaxed);

y.store(2, relaxed);

Rrlx x=1 g:Rrlx y=1
sb

f:Rrlx y=0 h:Rrlx x=0

c:Wrlx x=1 %

rf

Expert concurrency: fences avoid excess synchronisation

// sender // receiver
X = ... while (0 == y.load(acquire));
y.store(l, release); r = X;

Expert concurrency: fences avoid excess synchronisation

// sender // receiver

X = ... while (0 == y.load(acquire));
y.store(1l, release); r = X;

// sender // receiver

X = ... while (0 == y.load(relaxed));
y.store(l, release); fence(acquire) ;

r = X;

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1l, release); fence(acquire) ;

r = X;

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1l, release); fence(acquire) ;
r = x;
cW,,x=1 e:Rxy=1
rf
¢Sb/sb ¢
d:W,q y=1 fiFacq
sb

g:Rnax=1

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1l, release); fence(acquire) ;
r = X;
cW,,x=1 e:Rxy=1

rf
#sb/sb#
dW,qy=1 > f:Facq

swW
sb

g:Rnax=1

Expert concurrency: The fenced release-acquire idiom

// sender // receiver
X = ... while (0 == y.load(relaxed));
y.store(1l, release); fence(acquire) ;
r = x;
cW,,x=1 e:Rxy=1
rf
#sb b sb¢
d:W,q y=1 fiFacq
S
sb

g:Rnax=1

Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.store(l, relaxed); x.load(relaxed) ;
x.store(2, relaxed); x.load(relaxed);

Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.load(relaxed);
x.load(relaxed);

x.store(l, relaxed);
x.store(2, relaxed);

b:W,,x=1 * d:R, x=1

rf
sb ¢ sb ¢

c: W,y x=2 T e:R,jx x=2
r

Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.load(relaxed);
x.load(relaxed);

x.store(l, relaxed);
x.store(2, relaxed);

b:W,,x=1 * d:R, x=1

rf
mo ¢ sb ¢

c: W,y x=2 T e:R,jx x=2
r

Coherence and atomic reads

All forbidden!

Atomics cannot read from later writes in happens before.

b:W x=2 “mo cWx=1

f Jhb
d:Rx=2
CoWR

aWx=lL —+> cRx=1

\hw

d:W x=2
CoRW

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed); | compare_exchange(&x, 2, 3, relaxed, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

compare_exchange (&x, 2, 3, relaxed, relaxed);

a:W, x=1 d:RMW,, x=2/3

o)

b:W, i, x=2

o)

c:W, i x=4

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

compare_exchange (&x, 2, 3, relaxed, relaxed);

a:W, x=1 d:RMW,, x=2/3

oy "y

b:W, i, x=2

Sb¢ mo

c:W, i x=4

Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1l, relaxed);
x.store(2, relaxed);
x.store(4, relaxed);

compare_exchange (&x, 2, 3, relaxed, relaxed);

a: VVHXX 1 d RhAVVHXX 2/3

moy /

b.VVHXX——2

o)

c:W, i x=4

mo

Very expert concurrency: consume

Weaker than acquire

Stronger than relaxed

Non-transitive happens before! (only fully transitive
through data dependence, dd)

How may a program execute in the model?

1. P E, .., E,

How may a program execute in the model?

1. P— E, ..., E,
— find memory accesses with thread local semantics

How may a program execute in the model?

1. P— E, ..., E,
— find memory accesses with thread local semantics

2. E,' —)(,'17 ceny X,'m

How may a program execute in the model?

1. P— E, ..., E,
— find memory accesses with thread local semantics

2. E,' —)(,'17 ...,X,‘m
— calculate happens before, check the rules

How may a program execute in the model?

1. P— E, ..., E,
— find memory accesses with thread local semantics

2. E,' —)(,'17 ...,X,‘m
— calculate happens before, check the rules

3. is there an Xj; with a race?

How may a program execute in the model?

1. P— E, ..., E,
— find memory accesses with thread local semantics

2. E,' —)(,'17 ...,X,‘m
— calculate happens before, check the rules

3. is there an Xj; with a race?
— if so then have undefined behaviour

CPPMEM - demo!

Code in, all executions out

CPPMEM - demo!

Code in, all executions out
How may a program execute in CPPMEM?

1. P— E4,..., E, — tracking constraints

2. E; — X1, ..., Xjn — automatically uses formal model

3. is there an Xj; with a race?

The model as a whole

Clx and C++11 support many modes of programming:

e sequential

The model as a whole

Clx and C++11 support many modes of programming:

e sequential

e concurrent with locks

The model as a whole

Clx and C++11 support many modes of programming:

e sequential
e concurrent with locks

o with seq_cst atomics

The model as a whole

Clx and C++11 support many modes of programming:

e sequential
e concurrent with locks
o with seq_cst atomics

o with release and acquire

The model as a whole

Clx and C++11 support many modes of programming:

e sequential

e concurrent with locks

o with seq_cst atomics

o with release and acquire

o with relaxed, fences and the rest

The model as a whole

Clx and C++11 support many modes of programming:

e sequential

e concurrent with locks

o with seq_cst atomics
o with release and acquire

with relaxed, fences and the rest

(]

with all of the above plus consume

©

The model as a whole

Clx and C++11 support many modes of programming:

e sequential
e concurrent with locks

o with seq_cst atomics

(]

with release and acquire

with relaxed, fences and the rest

(]

©

with all of the above plus consume

Mathematizing C++ concurrency. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
In Proc. 38th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2011.

The full model

Theorems

Are Clx and C+-+11 hopelessly complicated?

Programmers cannot be given this model!

With a formal definition, we can do proof, and even
mechanise it.

What do we need to prove?

Are Clx and C+-+11 hopelessly complicated?

Programmers cannot be given this model!

With a formal definition, we can do proof, and even
mechanise it.

What do we need to prove?
o implementability
o simplifications

o libraries

Implementability

Can we compile to x867

Implementability

Can we compile to x867

Operation x86 Implementation
load(non-seq_cst) mov

load(seq_cst) mov
store(non-seq_cst) mov

store(seq_cst) mov; mfence
fence(non-seq_cst) no-op
fence(seq_cst) mfence

x86-TSO is stronger and simpler.

Top level comparison

Recall the C/C++ semantics for program P:
1. P E, ... E,

Top level comparison

Recall the C/C++ semantics for program P:

1. P Ei, ..., E, each an Eyead

Top level comparison

Recall the C/C++ semantics for program P:

1. P— Eq, ..., E,, each an Einread
2. E,‘ —>)(,'17 ...,X,‘m,

Top level comparison

Recall the C/C++ semantics for program P:

1. P~ El, ey En, each an Ethread
2. Ei = Xi1, ..., Xim, collectively Xitness

Top level comparison

Recall the C/C++ semantics for program P:

1. P— Eq, ..., E,, each an Einread
2. Ei — Xi1, ..., Xim, collectively Xyitness
3. is there an Xj; with a race? (actually, several kinds...)

Top level comparison

Recall the C/C++ semantics for program P:

1. P— Eq, ..., E,, each an Einread
2. Ei — Xi1, ..., Xim, collectively Xyitness
3. is there an Xj; with a race? (actually, several kinds...)

In x86-TSO:

Events and dependencies, Egs are analogous to Eijread.

Top level comparison

Recall the C/C++ semantics for program P:

1. P— Eq, ..., E,, each an Einread
2. Ei — Xi1, ..., Xim, collectively Xyitness
3. is there an Xj; with a race? (actually, several kinds...)

In x86-TSO:

Events and dependencies, Egs are analogous to Eijread.
Execution witnesses, X,g¢ are analogous to Xyitness-

Top level comparison

Recall the C/C++ semantics for program P:

1. P— Eq, ..., E,, each an Einread
2. Ei — Xi1, ..., Xim, collectively Xyitness
3. is there an Xj; with a race? (actually, several kinds...)

In x86-TSO:

Events and dependencies, Egs are analogous to Eijread.
Execution witnesses, X,g¢ are analogous to Xyitness-
There is not a DRF semantics.

Theorem

consistent_execution

Ethread = Xwitness
evt-compl evt_complT

Eyss X86

valid_execution

Theorem

consistent_execution

Ethread = Xwitness
evt-compl evt_complT
Exse X«g6

valid_execution

We have a mechanised proof that C1x/C++11 behaviour
is preserved.

Implementability

Can we compile to IBM Power?

Implementability

Can we compile to IBM Power?

C++40x Operation | POWER Implementation
Non-atomic Load | 1d

Load Relaxed 1d

Load Consume 1d (and preserve dependency)
Load Acquire 1d; cmp; bc; isync

Load Seq Cst sync; 1d; cmp; bc; isync
Non-atomic Store | st

Store Relaxed st

Store Release lwsync; st

Store Seq Cst sync; st

We have a hand proof that C1x/C++11 behaviour is preserved.

Implementability

Can we compile to IBM Power?

C++0x Operation

POWER Implementation

Non-atomic Load
Load Relaxed
Load Consume
Load Acquire
Load Seq Cst
Non-atomic Store
Store Relaxed
Store Release
Store Seq Cst

1d

1d

1d (and preserve dependency)
1d; cmp; bc; isync
sync; 1ld; cmp; bc; isync
st

st

lwsync; st

sync; st

We have a hand proof that C1x/C++11 behaviour is preserved.

Clarifying and compiling C/C++ concurrency: from C++0x to POWER. M. Batty,

K. Memarian, S. Owens, S. Sarkar, and P. Sewell. In Proc. 39th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), 2012.

mo_seq-cst

The compiler must ensure that mo_seq_cst atomics have SC
semantics.

x.store(l, mo_seq_cst); y.store(l, mo_seq_cst);
rl = y.load(mo_seq_cst); |r2 = x.load(mo_seq_cst);

The program above cannot end with r1 = r2 = 0.

Sample compilation on x86: Sample compilation on Power:
store: mov; mfence store: sync; st
load: mov load: sync; 1d; cmp; bc; isync

mo_release / mo_acquire

Supports fast implementation of the message passing idiom.

x = 1; rl = y.load(mo_acquire);
y.store(l, mo_release); r2 = x;
The program above cannot end with r1 = 1 and r2 = 0.

Accesses to the data could be reordered/optimised with mo_relaxed.

Sample compilation on x86: Sample compilation on Power:
store: mov

store: lwsync; st
load: mov

load: 1d; cmp; bc; isync

mo_release / mo_consume

Supports faster implementation of the message passing idiom on
Power.

x =1; rl = y.load(mo_consume) ;

y.store(&x, mo_release); r2 = *rl;

The program above cannot end with r1

&x and r2 = 0.

The two loads have an address dependency - Power won't reorder
them.

Sample compilation on x86: Sample compilation on Power:

store: mov store: lwsync; st
load: mov load: 1d

Refinements to the model and standards

Simplifications and meta-theorems

Full model — visible sequences of side effects are unneeded.

Simplifications and meta-theorems

Full model — visible sequences of side effects are unneeded.

Derivative models:
@ without consume, happens-before is transitive.
o DRF programs using only seq_cst atomics are SC (false).

Simplifications and meta-theorems

Full model — visible sequences of side effects are unneeded.

Derivative models:
@ without consume, happens-before is transitive.
o DRF programs using only seq_cst atomics are SC (false).
atomic_int x = O;
atomic_int y = O;
if (1 == x.load(seq_cst)) | if (1 == y.load(seq_cst))
atomic_init(&y, 1); atomic_init(&x, 1);

atomic_init is a non-atomic write, and in C1x/C++11 they race...

The current state of the standard

Fixed:

o Happens-before
o Coherence

e seq_cst atomics were broken

The current state of the standard

Fixed:

o Happens-before
o Coherence

e seq_cst atomics were broken

Not fixed:

o Self satisfying conditionals

Self-satisfying conditionals

rl = x.load(mo_relaxed);
if (r1 == 42)
y.store(rl, mo_relaxed);

r2 = y.load(mo_relaxed);
if (r2 == 42)
x.store(42, mo_relaxed);

c:Rrlx x=1 e:Rrlx y=1

iy

d:Wrlx y=1 f:Wrlx x=1

Self-satisfying conditionals

rl = x.load(mo_relaxed);
if (r1 == 42)
y.store(rl, mo_relaxed);

r2 = y.load(mo_relaxed);
if (r2 == 42)
x.store(42, mo_relaxed);

c:Rrlx x=1 e:Rrlx y=1

iy

d:Wrlx y=1 f:Wrlx x=1

"However, implementations should not allow such behavior.”

Self-satisfying conditionals

rl = x.load(mo_relaxed);
if (r1 == 42)
y.store(rl, mo_relaxed);

r2 = y.load(mo_relaxed);
if (r2 == 42)
x.store(42, mo_relaxed);

c:Rrlx x=1 e:Rrlx y=1

iy

d:Wrlx y=1 f:Wrlx x=1

"However, implementations should not allow such behavior.”

"should not” means "is allowed to” in the standard!

...but it's not all bad!

Syntactic divide supported by simpler memory models.
Increasingly reasonable, consistent specification.
Remaining problems far less serious than Java.

Implementable above key architectures.

Thanks!

