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C11 and C++11 Memory Model

A DRF model with the option to expose relaxed behaviour
in exchange for high performance.

C11 takes it’s model directly from C++11.

Allows for relaxed behaviour on target architectures, and
compiler optimisation.
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C++11: the next C++

1300 page prose specification defined by the ISO.

The design is a detailed compromise:

hardware/compiler implementability

useful abstractions

broad spectrum of programmers

We fixed serious problems in both C++11 and C1x, both
now finalised.



What does C++11 look like?

std::atomic<int> flag0(0),flag1(0),turn(0);

void lock(unsigned index) {

if (0 == index) {

flag0.store(1, std::memory_order_relaxed);

turn.exchange(1, std::memory_order_acq_rel);

while (flag1.load(std::memory_order_acquire)

&& 1 == turn.load(std::memory_order_relaxed))

std::this_thread::yield();

} else {

flag1.store(1, std::memory_order_relaxed);

turn.exchange(0, std::memory_order_acq_rel);

while (flag0.load(std::memory_order_acquire)

&& 0 == turn.load(std::memory_order_relaxed))

std::this_thread::yield();

}

void unlock(unsigned index) {

if (0 == index) {

flag0.store(0, std::memory_order_release);

} else {

flag1.store(0, std::memory_order_release);

}



Atomic accesses take a n ordering parameter

From most relaxed to most like DRF-SC:

memory order relaxed

memory order release/memory order acquire

memory order release/memory order consume

memory order seq cst



mo seq cst

The compiler must ensure that mo seq cst atomics have SC
semantics.

x.store(1, mo_seq_cst);

r1 = y.load(mo_seq_cst);

y.store(1, mo_seq_cst);

r2 = x.load(mo_seq_cst);

The program above cannot end with r1 = r2 = 0.



mo seq cst

The compiler must ensure that mo seq cst atomics have SC
semantics.

x.store(1, mo_seq_cst);

r1 = y.load(mo_seq_cst);

y.store(1, mo_seq_cst);

r2 = x.load(mo_seq_cst);

The program above cannot end with r1 = r2 = 0.

...so, MP is forbidden over mo seq cst. So are all other relaxed
behaviours.



mo release / mo acquire

Supports fast implementation of the message passing idiom.

x = 1;

y.store(1, mo_release);
r1 = y.load(mo_acquire);

r2 = x;

The program above cannot end with r1 = 1 and r2 = 0.



mo release / mo acquire

Supports fast implementation of the message passing idiom.

x = 1;

y.store(1, mo_release);
r1 = y.load(mo_acquire);

r2 = x;

The program above cannot end with r1 = 1 and r2 = 0.

...so, MP is forbidden using mo release and mo acquire. SB and
IRIW are allowed though.



mo release / mo consume

Supports faster implementation of the message passing idiom on
Power.

x = 1;

y.store(&x, mo_release);
r1 = y.load(mo_consume);

r2 = *r1;

The program above cannot end with r1 = &x and r2 = 0.

The two loads must have an address dependency.



mo relaxed

Very fast access, but also lots of strange behaviour.

r1 = x.load(mo_relaxed);

y.store(1, mo_relaxed);
r2 = y.load(mo_relaxed);

x.store(1, mo_relaxed);

The program above can end with r1 = 1 and r2 = 1.



mo relaxed

Very fast access, but also lots of strange behaviour.

r1 = x.load(mo_relaxed);

y.store(1, mo_relaxed);
r2 = y.load(mo_relaxed);

x.store(1, mo_relaxed);

The program above can end with r1 = 1 and r2 = 1.

...so, LB is allowed using mo relaxed. We will see that these
accesses are more relaxed than Power even.
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The C1x/C++11 memory model
sequential execution

simple concurrency

expert concurrency

very expert concurrency



A single threaded program

int main() {

int x = 2;

int y = 0;

y = (x==x);

return 0; }

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

sb sb

sb sb



A single threaded program

int main() {

int x = 2;

int y = 0;

y = (x==x);

return 0; }

a:Wna x=2

b:Wna y=0

c:Rna x=2 d:Rna x=2

e:Wna y=1

sb

rf rf

sb sb

sb sb
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sb – sequenced before

asw – additional synchronizes with
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The relations of a pre-execution

Each symbolic execution, Ei , contains:

sb – sequenced before

asw – additional synchronizes with

dd – data-dependence

Each full execution, Xij , also has:

rf – reads from

sc – SC order

mo – modification order



A data race

int y, x = 2;

x = 3; y = (x==3);

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

asw

asw,rf

sb



A data race

int y, x = 2;

x = 3; y = (x==3);

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

asw

asw,rf

dr

sb



Simple concurrency: Decker’s example and SC

atomic_int x = 0;

atomic_int y = 0;

x.store(1, seq_cst);

y.load(seq_cst);

y.store(1, seq_cst);

x.load(seq_cst);



Simple concurrency: Decker’s example and SC

atomic_int x = 0;

atomic_int y = 0;

x.store(1, seq_cst);

y.load(seq_cst);

y.store(1, seq_cst);

x.load(seq_cst);

c:Wsc y=1

d:Rsc x=0

e:Wsc x=1

f:Rsc y=0

sb sb



Simple concurrency: Decker’s example and SC

atomic_int x = 0;

atomic_int y = 0;

x.store(1, seq_cst);

y.load(seq_cst);

y.store(1, seq_cst);

x.load(seq_cst);

c:Wsc y=1

d:Rsc x=0

e:Wsc x=1

f:Rsc y=1

sc
sc

sc



SC atomics

Read the last write in SC order.

c:Wsc y=1

d:Rsc x=0 f:Rsc y=1

e:Wsc x=1

sc
rf

sc
sc

Using only seq_cst reads and writes gives SC.

(Initialization is not seq_cst though...)



Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

c:Racq y=1

d:Rna x=1

sb

rf

sb



Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

c:Racq y=1

d:Rna x=1

sb

sw

sb



Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

d:Rna x=1

c:Racq y=1

sb
hb

sw

sb



Expert concurrency: The release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

a:Wna x=1

b:Wrel y=1

d:Rna x=1

c:Racq y=1

sb
hb

sw

sb

simple-happens-before
−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb sc

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb sw

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

h:L mutex

i:Rna x=1

sb

sb hb

sb



Locks and unlocks

Unlocks and locks synchronise too:

int x, r;

mutex m;

m.lock();

x = ...

m.unlock();

m.lock();

r = x;

c:L mutex

d:Wna x=1

f:U mutex

i:Rna x=1

h:L mutex

sb

sb
rf
hb

sb



Happens-before is key to the model

Non-atomic loads read the most recent write in
happens-before. (This is unique in DRF programs)

The story is more complex for atomics, as we shall see,
but we cannot read from the future, in happens-before.

Data races are defined as an absence of happens-before.



A data race

int y, x = 2;

x = 3; y = (x==3);

a:Wna x=2

b:Wna x=3 c:Rna x=2

d:Wna y=0

asw

asw,rf

dr

sb



Data race definition

let data races actions hb =
{ (a, b) | ∀ a∈actions b∈actions |

¬ (a = b) ∧
same location a b ∧
(is write a ∨ is write b) ∧
¬ (same thread a b) ∧
¬ (is atomic action a ∧ is atomic action b) ∧
¬ ((a, b) ∈ hb ∨ (b, a) ∈ hb) }

A program with a data race has undefined behaviour.



Relaxed writes: load buffering

x.load(relaxed);

y.store(1, relaxed);
y.load(relaxed);

x.store(1, relaxed);

c:Rrlx x=1

d:Wrlx y=1

e:Rrlx y=1

f:Wrlx x=1

sb
rf

sb
rf

No synchronisation cost, but weakly ordered.



Relaxed writes: independent reads, independent writes

atomic_int x = 0;

atomic_int y = 0;

x.store(1, relaxed); y.store(2, relaxed); x.load(relaxed);

y.load(relaxed);
y.load(relaxed);

x.load(relaxed);

c:Wrlx x=1 e:Rrlx x=1d:Wrlx y=1 g:Rrlx y=1

f:Rrlx y=0 h:Rrlx x=0

rf rfsb sb



Expert concurrency: fences avoid excess synchronisation

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;



Expert concurrency: fences avoid excess synchronisation

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(acquire));

r = x;

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;

c:Wna x=1

d:Wrel y=1

e:Rrlx y=1

f:Facq

g:Rna x=1

sb
rf

sb

sb



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;

c:Wna x=1

d:Wrel y=1

e:Rrlx y=1

f:Facq

g:Rna x=1

sb
rf

sw

sb

sb



Expert concurrency: The fenced release-acquire idiom

// sender

x = ...

y.store(1, release);

// receiver

while (0 == y.load(relaxed));

fence(acquire);

r = x;

c:Wna x=1

d:Wrel y=1

g:Rna x=1

e:Rrlx y=1

f:Facq

sb hb
rf

sw

sb

sb



Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.store(1, relaxed);

x.store(2, relaxed);

x.load(relaxed);

x.load(relaxed);



Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.store(1, relaxed);

x.store(2, relaxed);

x.load(relaxed);

x.load(relaxed);

b:Wrlx x=1

c:Wrlx x=2

d:Rrlx x=1

e:Rrlx x=2

sb
rf

rf

sb



Expert concurrency: modification order

Modification order is a per-location total order over
atomic writes of any memory order.

x.store(1, relaxed);

x.store(2, relaxed);

x.load(relaxed);

x.load(relaxed);

b:Wrlx x=1

c:Wrlx x=2

d:Rrlx x=1

e:Rrlx x=2

mo
rf

rf

sb



Coherence and atomic reads

All forbidden!

CoRR

a:W x=1

b:W x=2 d:R x=2

c:R x=1
rf

mo

rf

hb

CoWR

b:W x=2 c:W x=1

d:R x=2

hb
mo

rf

CoWW

a:W x=1

b:W x=2

hb mo

CoRW

a:W x=1 c:R x=1

d:W x=2
mo

rf
hb

Atomics cannot read from later writes in happens before.



Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);



Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);

a:Wrlx x=1

b:Wrlx x=2

c:Wrlx x=4

d:RMWrlx x=2/3

sb

sb



Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);

a:Wrlx x=1

b:Wrlx x=2

c:Wrlx x=4

d:RMWrlx x=2/3

mo

sb

mo

mo



Read-modify-writes

A successful compare_exchange is a read-modify-write.

Read-modify-writes read the last write in mo:

x.store(1, relaxed);

x.store(2, relaxed);

x.store(4, relaxed);

compare_exchange(&x, 2, 3, relaxed, relaxed);

a:Wrlx x=1

b:Wrlx x=2

c:Wrlx x=4

d:RMWrlx x=2/3

mo

sb

rf,mo

mo



Very expert concurrency: consume

Weaker than acquire

Stronger than relaxed

Non-transitive happens before! (only fully transitive
through data dependence, dd)
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1. P 7→ E1, ...,En



How may a program execute in the model?

1. P 7→ E1, ...,En

— find memory accesses with thread local semantics



How may a program execute in the model?

1. P 7→ E1, ...,En

— find memory accesses with thread local semantics

2. Ei 7→ Xi1, ...,Xim



How may a program execute in the model?

1. P 7→ E1, ...,En

— find memory accesses with thread local semantics

2. Ei 7→ Xi1, ...,Xim

— calculate happens before, check the rules



How may a program execute in the model?

1. P 7→ E1, ...,En

— find memory accesses with thread local semantics

2. Ei 7→ Xi1, ...,Xim

— calculate happens before, check the rules

3. is there an Xij with a race?



How may a program execute in the model?

1. P 7→ E1, ...,En

— find memory accesses with thread local semantics

2. Ei 7→ Xi1, ...,Xim

— calculate happens before, check the rules

3. is there an Xij with a race?
— if so then have undefined behaviour



Cppmem - demo!

Code in, all executions out



Cppmem - demo!

Code in, all executions out

How may a program execute in Cppmem?

1. P 7→ E1, ...,En — tracking constraints

2. Ei 7→ Xi1, ...,Xim — automatically uses formal model

3. is there an Xij with a race?
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The model as a whole

C1x and C++11 support many modes of programming:

sequential

concurrent with locks

with seq_cst atomics

with release and acquire

with relaxed, fences and the rest

with all of the above plus consume

Mathematizing C++ concurrency. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber.
In Proc. 38th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2011.



The full model

a
r
−→ b = (a, b) ∈ r

a r b = (a, b) ∈ r

a 6
r
−→ b = (a, b) /∈ r

r
−→ = r

a
r
−→ b

s
−→ c = a

r
−→ b ∧ b

s
−→ c

relation over s rel = domain rel ⊆ s ∧ range rel ⊆ s

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

rel
−→|s = rel ∩ (s × s)

rel |s = rel ∩ (s × s)

strict preorder ord = irreflexive ord ∧ trans ord

total over s ord =
relation over s ord ∧

(∀x ∈ s. ∀y ∈ s. x
ord
−−→ y ∨ y

ord
−−→ x ∨ (x = y))

strict total order over s ord =
strict preorder ord ∧ total over s ord

x |
ord
−−→pred y =

pred x ∧ x
ord
−−→ y ∧ ¬(∃z . pred z ∧ x

ord
−−→ z

ord
−−→ y)

x |
ord
−−→ y =

x
ord
−−→ y ∧ ¬(∃z . x

ord
−−→ z

ord
−−→ y)

well founded r = wf r

type abbrev action id : string

type abbrev thread id : string

type abbrev location : string

type abbrev val : string

memory order enum =
Mo seq cst

| Mo relaxed

| Mo release

| Mo acquire

| Mo consume

| Mo acq rel

action =
Lock of action id thread id location

| Unlock of action id thread id location

| Atomic load of action id thread id memory order enum location val
| Atomic store of action id thread id memory order enum location val
| Atomic rmw of action id thread id memory order enum location val val
| Load of action id thread id location val
| Store of action id thread id location val
| Fence of action id thread id memory order enum

(action id of (Lock aid ) = aid) ∧
(action id of (Unlock aid ) = aid) ∧
(action id of (Atomic load aid ) = aid) ∧
(action id of (Atomic store aid ) = aid) ∧
(action id of (Atomic rmw aid ) = aid) ∧
(action id of (Load aid ) = aid) ∧
(action id of (Store aid ) = aid) ∧
(action id of (Fence aid ) = aid)

(thread id of (Lock tid ) = tid) ∧
(thread id of (Unlock tid ) = tid) ∧
(thread id of (Atomic load tid ) = tid) ∧
(thread id of (Atomic store tid ) = tid) ∧
(thread id of (Atomic rmw tid ) = tid) ∧
(thread id of (Load tid ) = tid) ∧
(thread id of (Store tid ) = tid) ∧
(thread id of (Fence tid ) = tid)

(memory order (Atomic load mem ord ) =
Some mem ord) ∧

(memory order (Atomic store mem ord ) =
Some mem ord) ∧

(memory order (Atomic rmw mem ord ) =
Some mem ord) ∧

(memory order (Fence mem ord) =
Some mem ord) ∧

(memory order =
None)

(location (Lock l) = Some l) ∧
(location (Unlock l) = Some l) ∧
(location (Atomic load l ) = Some l) ∧
(location (Atomic store l ) = Some l) ∧
(location (Atomic rmw l ) = Some l) ∧
(location (Load l ) = Some l) ∧
(location (Store l ) = Some l) ∧
(location (Fence ) = None)

(value read (Atomic load v) = Some v) ∧
(value read (Atomic rmw v ) = Some v) ∧
(value read (Load v) = Some v) ∧
(value read = None)

(value written (Atomic store v) = Some v) ∧
(value written (Atomic rmw v) = Some v) ∧
(value written (Store v) = Some v) ∧
(value written = None)

is lock a =
case a of Lock → T ‖ → F

is unlock a =
case a of Unlock → T ‖ → F

is atomic load a =
case a of Atomic load → T ‖ → F

is atomic store a =
case a of Atomic store → T ‖ → F

is atomic rmw a =
case a of Atomic rmw → T ‖ → F

is load a = case a of Load → T ‖ → F

is store a = case a of Store → T ‖ → F

is fence a = case a of Fence → T ‖ → F

is lock or unlock a = is lock a ∨ is unlock a

is atomic action a =
is atomic load a ∨ is atomic store a ∨ is atomic rmw a

is load or store a = is load a ∨ is store a

is read a =
is atomic load a ∨ is atomic rmw a ∨ is load a

is write a =
is atomic store a ∨ is atomic rmw a ∨ is store a

is acquire a =
(case memory order a of

Some mem ord →
(mem ord ∈

{Mo acquire,Mo acq rel,Mo seq cst} ∧
(is read a ∨ is fence a)) ∨
(* 29.8:5 states that consume fences are acquire fences. *)
((mem ord = Mo consume) ∧ is fence a)

‖ None → is lock a)

is consume a =
is read a ∧ (memory order a = Some Mo consume)

is release a =
(case memory order a of

Some mem ord →
mem ord ∈ {Mo release,Mo acq rel,Mo seq cst} ∧

(is write a ∨ is fence a)
‖ None → is unlock a)

is seq cst a = (memory order a = Some Mo seq cst)

location kind =
Mutex

| Non atomic

| Atomic

actions respect location kinds = actions respect location kinds =
∀a.

case location a of Some l →
(case location-kind l of

Mutex → is lock or unlock a

‖ Non atomic → is load or store a

‖ Atomic → is load or store a ∨ is atomic action a)
‖ None → T

is at location kind = is at location kind =
case location a of

Some l → (location-kind l = lk0)
‖ None → F

is at mutex location a =
is at location kind a Mutex

is at non atomic location a =
is at location kind a Non atomic

is at atomic location a =
is at location kind a Atomic

same thread a b = (thread id of a = thread id of b)

threadwise relation over s rel =
relation over s rel ∧ (∀(a, b) ∈ rel . same thread a b)

same location a b = (location a = location b)

locations of actions = {l . ∃a. (location a = Some l)}

well formed action a =
case a of

Atomic load mem ord → mem ord ∈
{Mo relaxed,Mo acquire,Mo seq cst,Mo consume}

‖ Atomic store mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo seq cst}

‖ Atomic rmw mem ord → mem ord ∈
{Mo relaxed,Mo release,Mo acquire,Mo acq rel,Mo seq cst,Mo consume}

‖ → T

well formed threads = well formed threads =
inj on action id of (actions) ∧
(∀a. well formed action a) ∧
threadwise relation over actions sequenced-before ∧
threadwise relation over actions data-dependency ∧
threadwise relation over actions control-dependency ∧
strict preorder sequenced-before ∧
strict preorder data-dependency ∧
strict preorder control-dependency ∧
relation over actions additional-synchronized-with ∧
(∀a. thread id of a ∈ threads) ∧
actions respect location kinds∧
data-dependency ⊆ sequenced-before

well formed reads from mapping = well formed reads from mapping =

relation over actions (
rf
−→) ∧

(∀a. ∀a′. ∀b. a
rf
−→ b ∧ a′

rf
−→ b =⇒ (a = a′)) ∧

(∀(a, b) ∈
rf
−→.

same location a b ∧
(value read b = value written a) ∧
(a 6= b) ∧
(is at mutex location a =⇒

is unlock a ∧ is lock b) ∧
(is at non atomic location a =⇒

is store a ∧ is load b) ∧
(is at atomic location a =⇒
(is atomic store a ∨ is atomic rmw a ∨ is store a)
∧ (is atomic load b ∨ is atomic rmw b ∨ is load b)))

all lock or unlock actions at lopt as =
{a ∈ as. is lock or unlock a ∧ (location a = lopt)}

consistent locks = consistent locks =
∀l ∈ locations of actions. (location-kind l = Mutex) =⇒ (

let lock unlock actions =
all lock or unlock actions at (Some l)actions in

let lock order =
sc
−→|lock unlock actions in

(* 30.4.1:5 - The implementation shall serialize those (lock and unlock) operations. *)
strict total order over lock unlock actions lock order ∧

(* 30.4.1:1 A thread owns a mutex from the time it successfully calls one of the lock functions until
it calls unlock.*)
(* 30.4.1:20 Requires: The calling thread shall own the mutex. *)
(* 30.4.1:21 Effects: Releases the calling threads ownership of the mutex.*)
(∀au ∈ lock unlock actions. is unlock au =⇒

(∃al ∈ lock unlock actions.

al |
lock order
−−−−−−→ au ∧ same thread al au ∧ is lock al)) ∧

(* 30.4.1:7 Effects: Blocks the calling thread until ownership of the mutex can be obtained for the
calling thread.*)
(* 30.4.1:8 Postcondition: The calling thread owns the mutex. *)
(∀al ∈ lock unlock actions. is lock al =⇒

(∀au ∈ lock unlock actions.

au |
lock order
−−−−−−→ al =⇒ is unlock au)))

rs element rs head a =
same thread a rs head ∨ is atomic rmw a

release sequence = arel
release-sequence
−−−−−−−−−→ b =

is at atomic location b ∧
is release arel ∧ (
(b = arel) ∨

(rs element arel b ∧ arel
modification-order
−−−−−−−−−−→ b ∧

(∀c . arel
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element arel c)))

release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

hypothetical release sequence = a
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ b =

is at atomic location b ∧ (
(b = a) ∨

(rs element a b ∧ a
modification-order
−−−−−−−−−−→ b ∧

(∀c . a
modification-order
−−−−−−−−−−→ c

modification-order
−−−−−−−−−−→ b =⇒

rs element a c)))

hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order =

hypothetical release sequence actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order a b}

synchronizes with = a
synchronizes-with
−−−−−−−−−−→ b =

(* – additional synchronization, from thread create etc. – *)

a
additional-synchronized-with
−−−−−−−−−−−−−−−−→ b ∨

(same location a b ∧ a ∈ actions ∧ b ∈ actions ∧ (
(* – mutex synchronization – *)

(is unlock a ∧ is lock b ∧ a
sc
−→ b) ∨

(* – release/acquire synchronization – *)
(is release a ∧ is acquire b ∧ ¬ same thread a b ∧

(∃c . a
release-sequence
−−−−−−−−−→ c

rf
−→ b)) ∨

(* – fence synchronization – *)
(is fence a ∧ is release a ∧ is fence b ∧ is acquire b ∧
(∃x . ∃y . same location x y ∧

is atomic action x ∧ is atomic action y ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧ y

sequenced-before
−−−−−−−−−→ b ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ y))) ∨

(is fence a ∧ is release a ∧
is atomic action b ∧ is acquire b ∧
(∃x . same location x b ∧

is atomic action x ∧ is write x ∧

a
sequenced-before
−−−−−−−−−→ x ∧

(∃z . x
hypothetical-release-sequence
−−−−−−−−−−−−−−−−→ z

rf
−→ b))) ∨

(is atomic action a ∧ is release a ∧
is fence b ∧ is acquire b ∧
(∃x . same location a x ∧ is atomic action x ∧

x
sequenced-before
−−−−−−−−−→ b ∧

(∃z . a
release-sequence
−−−−−−−−−→ z

rf
−→ x)))))

synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence =

synchronizes with actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence a b}

carries a dependency to = a
carries-a-dependency-to
−−−−−−−−−−−−−→ b =

a ((
rf
−→∩

sequenced-before
−−−−−−−−−→) ∪

data-dependency
−−−−−−−−−→)+ b

carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf =

carries a dependency to actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf a b}

dependency ordered before = a
dependency-ordered-before
−−−−−−−−−−−−−−−→ d =

a ∈ actions ∧ d ∈ actions ∧
(∃b. is release a ∧ is consume b ∧

(∃e. a
release-sequence
−−−−−−−−−→ e

rf
−→ b) ∧

(b
carries-a-dependency-to
−−−−−−−−−−−−−→ d ∨ (b = d)))

dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to =

dependency ordered before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to a b}

simple happens before =
simple happens before
−−−−−−−−−−−−−→ =

(
sequenced-before
−−−−−−−−−→∪

synchronizes-with
−−−−−−−−−−→)+

consistent simple happens before shb =

irreflexive (
shb
−−→)

inter thread happens before =
inter-thread-happens-before
−−−−−−−−−−−−−−−→ =

let r =
synchronizes-with
−−−−−−−−−−→∪

dependency-ordered-before
−−−−−−−−−−−−−−−→∪

(
synchronizes-with
−−−−−−−−−−→ ◦

sequenced-before
−−−−−−−−−→) in

(
r
−→∪ (

sequenced-before
−−−−−−−−−→ ◦

r
−→))+

consistent inter thread happens before = consistent inter thread happens before =

irreflexive (
inter-thread-happens-before
−−−−−−−−−−−−−−−→)

happens before =
happens-before
−−−−−−−−→ =

sequenced-before
−−−−−−−−−→∪

inter-thread-happens-before
−−−−−−−−−−−−−−−→

all sc actions = all sc actions =
{a. (is seq cst a ∨ is lock a ∨ is unlock a)}

consistent sc order = consistent sc order =

let sc happens before =
happens-before
−−−−−−−−→|all sc actions in

let sc mod order =
modification-order
−−−−−−−−−−→|all sc actions in

strict total order over all sc actions (
sc
−→) ∧

sc happens before
−−−−−−−−−−−→ ⊆

sc
−→∧

sc mod order
−−−−−−−−→ ⊆

sc
−→

consistent modification order = consistent modification order =

(∀a. ∀b. a
modification-order
−−−−−−−−−−→ b =⇒ same location a b) ∧

(∀l ∈ locations of actions. case location-kind l of

Atomic → (
let actions at l = {a. (location a = Some l)} in

let writes at l = {a at l . (is store a ∨
is atomic store a ∨ is atomic rmw a)} in

strict total order over writes at l

(
modification-order
−−−−−−−−−−→|actions at l) ∧
(* happens-before at the writes of l is a subset of mo for l *)
happens-before
−−−−−−−−→|writes at l ⊆

modification-order
−−−−−−−−−−→∧

(* Mo seq cst fences impose modification order *)

(
sequenced-before
−−−−−−−−−→ ◦ (

sc
−→|is fence) ◦

sequenced-before
−−−−−−−−−→|writes at l)

⊆
modification-order
−−−−−−−−−−→)

‖ → (
let actions at l = {a. (location a = Some l)} in

(
modification-order
−−−−−−−−−−→|actions at l) = {}))

visible side effect = a
visible-side-effect
−−−−−−−−−→ b =

a
happens-before
−−−−−−−−→ b ∧

is write a ∧ is read b ∧ same location a b ∧
¬(∃c . (c 6= a) ∧ (c 6= b) ∧

is write c ∧ same location c b ∧

a
happens-before
−−−−−−−−→ c

happens-before
−−−−−−−−→ b)

visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before =
{ab ∈ happens-before. let (a, b) = ab in

visible side effect actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before a b}

visible sequence of side effects tail = visible sequence of side effects tail vsse head b =

{c . vsse head
modification-order
−−−−−−−−−−→ c ∧

¬(b
happens-before
−−−−−−−−→ c) ∧

(∀a. vsse head
modification-order
−−−−−−−−−−→ a

modification-order
−−−−−−−−−−→ c

=⇒ ¬(b
happens-before
−−−−−−−−→ a))}

myimage f s = {y . ∃x ∈ s. (y = f x)}

visible sequences of side effects = visible sequences of side effects =
λ(vsse head , b).
(b, if is at atomic location b then

{vsse head} ∪
visible sequence of side effects tail vsse head b

else

{})

visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect =
myimage (visible sequences of side effects actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect)visible-side-effect

consistent reads from mapping = consistent reads from mapping =
(∀b. (is read b ∧ is at non atomic location b) =⇒

(if (∃avse . avse
visible-side-effect
−−−−−−−−−→ b)

then (∃avse . avse
visible-side-effect
−−−−−−−−−→ b ∧ avse

rf
−→ b)

else ¬(∃a. a
rf
−→ b))) ∧

(∀b. (is read b ∧ is at atomic location b) =⇒
(if (∃(b′, vsse) ∈ visible-sequences-of-side-effects. (b′ = b))
then (∃(b′, vsse) ∈ visible-sequences-of-side-effects.

(b′ = b) ∧ (∃c ∈ vsse. c
rf
−→ b))

else ¬(∃a. a
rf
−→ b))) ∧

(∀(x , a) ∈
rf
−→.

∀(y , b) ∈
rf
−→.

a
happens-before
−−−−−−−−→ b ∧
same location a b ∧ is at atomic location b

=⇒ (x = y) ∨ x
modification-order
−−−−−−−−−−→ y) ∧

(* new CoWR *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ b ∧
is write a ∧ same location a b ∧ is at atomic location b

=⇒ (c = a) ∨ a
modification-order
−−−−−−−−−−→ c) ∧

(* new CoRW *)

(∀(a, b) ∈
happens-before
−−−−−−−−→.

∀c .

c
rf
−→ a ∧
is write b ∧ same location a b ∧ is at atomic location a

=⇒ c
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is atomic rmw b

=⇒ a |
modification-order
−−−−−−−−−−→ b) ∧

(∀(a, b) ∈
rf
−→. is seq cst b

=⇒ (¬ is seq cst a ∧ (∀x . x |
sc
−→λc. is write c∧same location b c b =⇒ x

modification-order
−−−−−−−−−−→ a)) ∨

a |
sc
−→λc. is write c∧same location b c b) ∧

(* -Fence restrictions- *)

(* 29.3:3 *)

(∀a. ∀(x , b) ∈
sequenced-before
−−−−−−−−−→. ∀y .

(is fence x ∧ is seq cst x ∧ is atomic action b ∧
is write a ∧ same location a b ∧

a |
sc
−→ x ∧ y

rf
−→ b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:4 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

rf
−→.

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ same location a b ∧

x
sc
−→ b ∧ is atomic action b)

=⇒ (y = a) ∨ a
modification-order
−−−−−−−−−−→ y) ∧

(* 29.3:5 *)

(∀(a, x) ∈
sequenced-before
−−−−−−−−−→. ∀(y , b) ∈

sequenced-before
−−−−−−−−−→. ∀z .

(is atomic action a ∧ is fence x ∧ is seq cst x ∧
is write a ∧ is fence y ∧ is seq cst y ∧
is atomic action b ∧ same location a b ∧

x
sc
−→ y ∧ z

rf
−→ b)

=⇒ (z = a) ∨ a
modification-order
−−−−−−−−−−→ z)

all data dependency =
all data dependency
−−−−−−−−−−−−→ =

(
rf
−→∪

carries-a-dependency-to
−−−−−−−−−−−−−→)+

consistent control dependency = consistent control dependency =

irreflexive ((
control-dependency
−−−−−−−−−−−→∪

all data dependency
−−−−−−−−−−−−→)+)

consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
well formed threads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧
consistent locks actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc ∧ (
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in

let hypothetical-release-sequence = hypothetical release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in

let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in

let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in

let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in

let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in

let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in

let visible-side-effect = visible side effect set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before in

let visible-sequences-of-side-effects = visible sequences of side effects set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order happens-before visible-side-effect in

consistent inter thread happens before inter-thread-happens-before ∧
consistent sc order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order sc happens-before ∧
consistent modification order actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency sc modification-order happens-before ∧
well formed reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf ∧
consistent reads from mapping actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf sc modification-order happens-before visible-side-effect visible-sequences-of-side-effects)

indeterminate reads actions threads = indeterminate reads =

{b. is read b ∧ ¬(∃a. a
rf
−→ b)}

unsequenced races = unsequenced races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
same thread a b ∧

¬(a
sequenced-before
−−−−−−−−−→ b ∨ b

sequenced-before
−−−−−−−−−→ a)}

data races = data races = {(a, b).
(a 6= b) ∧ same location a b ∧ (is write a ∨ is write b) ∧
¬ same thread a b ∧
¬(is atomic action a ∧ is atomic action b) ∧

¬(a
happens-before
−−−−−−−−→ b ∨ b

happens-before
−−−−−−−−→ a)}

data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc =
let release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in

let hypothetical-release-sequence = release sequence set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency modification-order in

let synchronizes-with = synchronizes with set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc release-sequence hypothetical-release-sequence in

let carries-a-dependency-to = carries a dependency to set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf in

let dependency-ordered-before = dependency ordered before set actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order release-sequence carries-a-dependency-to in

let inter-thread-happens-before = inter thread happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency synchronizes-with dependency-ordered-before in

let happens-before = happens before actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency inter-thread-happens-before in

data races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency happens-before

cpp memory model opsem (p ∈ ′program) =
let executions = {(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc).

opsem p actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency ∧ consistent execution actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc} in

if ∃(actions, threads, location-kind, sequenced-before, additional-synchronized-with, data-dependency, control-dependency, rf,modification-order, sc) ∈ executions .
(indeterminate reads actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf 6= {}) ∨
(unsequenced races actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency 6= {}) ∨
(data races′ actions threads location-kind sequenced-before additional-synchronized-with data-dependency control-dependency rf modification-order sc 6= {})

then {}
else executions
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Implementability

Can we compile to x86?

Operation x86 Implementation
load(non-seq cst) mov
load(seq cst) mov
store(non-seq cst) mov
store(seq cst) mov; mfence
fence(non-seq cst) no-op
fence(seq cst) mfence

x86-TSO is stronger and simpler.
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Top level comparison

Recall the C/C++ semantics for program P :

1. P 7→ E1, ...,En, each an Ethread

2. Ei 7→ Xi1, ...,Xim, collectively Xwitness

3. is there an Xij with a race? (actually, several kinds...)

In x86-TSO:

Events and dependencies, Ex86 are analogous to Ethread.
Execution witnesses, Xx86 are analogous to Xwitness.
There is not a DRF semantics.
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Theorem

Ethread
consistent execution

evt comp

Xwitness

Ex86 valid execution
Xx86

evt comp−1

We have a mechanised proof that C1x/C++11 behaviour
is preserved.
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Can we compile to IBM Power?

C++0x Operation POWER Implementation

Non-atomic Load ld

Load Relaxed ld

Load Consume ld (and preserve dependency)
Load Acquire ld; cmp; bc; isync

Load Seq Cst sync; ld; cmp; bc; isync

Non-atomic Store st

Store Relaxed st

Store Release lwsync; st

Store Seq Cst sync; st

We have a hand proof that C1x/C++11 behaviour is preserved.



Implementability

Can we compile to IBM Power?

C++0x Operation POWER Implementation

Non-atomic Load ld

Load Relaxed ld

Load Consume ld (and preserve dependency)
Load Acquire ld; cmp; bc; isync

Load Seq Cst sync; ld; cmp; bc; isync

Non-atomic Store st

Store Relaxed st

Store Release lwsync; st

Store Seq Cst sync; st

We have a hand proof that C1x/C++11 behaviour is preserved.

Clarifying and compiling C/C++ concurrency: from C++0x to POWER. M. Batty,
K. Memarian, S. Owens, S. Sarkar, and P. Sewell. In Proc. 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 2012.



mo seq cst

The compiler must ensure that mo seq cst atomics have SC
semantics.

x.store(1, mo_seq_cst);

r1 = y.load(mo_seq_cst);

y.store(1, mo_seq_cst);

r2 = x.load(mo_seq_cst);

The program above cannot end with r1 = r2 = 0.

Sample compilation on x86: Sample compilation on Power:

store: mov; mfence store: sync; st

load: mov load: sync; ld; cmp; bc; isync



mo release / mo acquire

Supports fast implementation of the message passing idiom.

x = 1;

y.store(1, mo_release);
r1 = y.load(mo_acquire);

r2 = x;

The program above cannot end with r1 = 1 and r2 = 0.

Accesses to the data could be reordered/optimised with mo relaxed.

Sample compilation on x86: Sample compilation on Power:

store: mov store: lwsync; st

load: mov load: ld; cmp; bc; isync



mo release / mo consume

Supports faster implementation of the message passing idiom on
Power.

x = 1;

y.store(&x, mo_release);
r1 = y.load(mo_consume);

r2 = *r1;

The program above cannot end with r1 = &x and r2 = 0.

The two loads have an address dependency - Power won’t reorder
them.

Sample compilation on x86: Sample compilation on Power:

store: mov store: lwsync; st

load: mov load: ld



Refinements to the model and standards
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Full model – visible sequences of side effects are unneeded.



Simplifications and meta-theorems

Full model – visible sequences of side effects are unneeded.

Derivative models:

without consume, happens-before is transitive.

DRF programs using only seq_cst atomics are SC (false).



Simplifications and meta-theorems

Full model – visible sequences of side effects are unneeded.

Derivative models:

without consume, happens-before is transitive.

DRF programs using only seq_cst atomics are SC (false).

atomic_int x = 0;

atomic_int y = 0;

if (1 == x.load(seq_cst))

atomic_init(&y, 1);
if (1 == y.load(seq_cst))

atomic_init(&x, 1);

atomic_init is a non-atomic write, and in C1x/C++11 they race...
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seq_cst atomics were broken



The current state of the standard

Fixed:

Happens-before

Coherence

seq_cst atomics were broken

Not fixed:

Self satisfying conditionals



Self-satisfying conditionals

r1 = x.load(mo_relaxed);

if (r1 == 42)

y.store(r1, mo_relaxed);

r2 = y.load(mo_relaxed);

if (r2 == 42)

x.store(42, mo_relaxed);

c:Rrlx x=1

d:Wrlx y=1

e:Rrlx y=1

f:Wrlx x=1

sb
rf

sb
rf
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rf

”However, implementations should not allow such behavior.”



Self-satisfying conditionals

r1 = x.load(mo_relaxed);

if (r1 == 42)

y.store(r1, mo_relaxed);

r2 = y.load(mo_relaxed);

if (r2 == 42)

x.store(42, mo_relaxed);

c:Rrlx x=1

d:Wrlx y=1

e:Rrlx y=1

f:Wrlx x=1

sb
rf

sb
rf

”However, implementations should not allow such behavior.”

”should not” means ”is allowed to” in the standard!



...but it’s not all bad!

Syntactic divide supported by simpler memory models.

Increasingly reasonable, consistent specification.

Remaining problems far less serious than Java.

Implementable above key architectures.



Thanks!


