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These Lectures

Semantics of concurrency in multiprocessors and
programming languages.

Establish a solid basis for thinking about relaxed-memory
executions, linking to usage, microarchitecture, experiment,
and semantics. x86, POWER/ARM, C/C++11

Today: x86



Inventing a Usable Abstraction

Have to be:
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Unambiguous

Sound w.r.t. experimentally observable behaviour
Easy to understand

Consistent with what we know of vendors intentions
Consistent with expert-programmer reasoning



Inventing a Usable Abstraction

Key facts:
o Store buffering (with forwarding) is observable

o |RIW is not observable, and is forbidden by the recent
docs

# Various other reorderings are not observable and are
forbidden

These suggest that x86 is, in practice, like SPARC TSO.



x86-TSO Abstract Machine
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MOV EAX«|y] (ready) MOV EBX«[x] (read x)
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MOV EAX«|y] (ready) MOV EBX«[x] (read x)
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SB, on x86

Thread 0 Thread 1
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MOV EAX«|y] (ready) MOV EBX«[x] (read x)
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MOV EAX«|y] (ready) MOV EBX«[x] (read x)

Thread eee Thread
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MOV EAX«|y] (ready) MOV EBX«[x] (read x)
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SB, on x86

Thread 0 Thread 1
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SB, on x86

Thread 0 Thread 1
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
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SB, on x86

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MOV EAX«|y] (ready) MOV EBX«[x] (read x)
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How to formally define this?

Separate instruction semantics and memory model

Define the memory model in two (provably equivalent)
styles:

# an abstract machine (or operational model)
# an axiomatic model

Put the instruction semantics and abstract machine in
parallel, exchanging read and write messages (and
lock/unlock messages).



Let’s Pretend... that we live in an SC world

Thread; ©eoo Thread,,
i i

Shared Memory

Multiple threads acting on a sequentially consistent (SC)
shared memory



integer, n
thread_1id, t

eTPression, €

process, p

A Tiny Language

location, z, m address

integer
thread id
= expression
n integer literal
T read from address z
T =ce write value of e to address z
e; e sequential composition
e+ ¢ plus
process

t:e thread

plp’ parallel composition



A Tiny Language

That was just the syntax — how can we be precise about
the permitted behaviours of programs?

— p. 10



Defining an SC Semantics: expressions

e — e e does [ to become ¢’
READ
Rxz=n
r ———> N
WRITE

WRITE_CONTEXT

! /
61_>€1

l SEQ_CONTEXT
e1; €2 —> €1; €2

e — e e does [ to become ¢’
! /
l PLUS_CONTEXT_1
e1 + ex — €] + ey
Loy

l PLUS_CONTEXT_2
ny + ex = ny + €

n = mny + no

p- PLUS
ny—+ nNo —n

— p. 11



Example: SC Expression Trace



Example: SC Expression Trace

Ry:7\ Waz=7 7 Rz=9 9

— p. 12



Example: SC Expression Trace

(z=y)z
Ry=7 Wz= Rz=
(1 = y); 0 ——L W=l 7, Re=9, g
T READ
Y RE — WRITE_CONTEXT
T =1 BAL SIS

SEQ_CONTEXT

(x:y);xﬂ(x:ﬂ;x

— p. 12



Example: SC Expression Trace

(z=y);x
Ry=7T Wz—7 r Ra—
(1 = y); 0 ——L W=l 7, Re=9, g
R WRITE
L=0— SEQ_CONTEXT

($:7);$M7;x

— p. 12



Example: SC Expression Trace

Ry:7\ Waz=7 7 Rz=9 9

— p. 12



Defining an SC Semantics: lifting to processes

p — p'| pdoest:ltobecome p’
Lo
e — €
"y THREAD
t:e = t:e’
t:l /
P1 — P
—~ PAR_CONTEXT_LEFT
pilp2 — pi|p2
t:l /
P2 — Py

" PAR_CONTEXT_RIGHT
p1lp2 — p1|py

free interleaving

— . 13



Defining an SC Semantics: SC memory

Take an SC memory M to be a function from addresses to
Integers.

Define the behaviour as a labelled transition system (LTS):
the least set of (memory,label,memory) triples satisfying
these rules.

VLN VAV does ¢t : [ to become M’

M(z)=mn

—— MREAD
M — M

MWRITE

M EWEER A ® (z — n)

— p. 14



Defining an SC Semantics: whole-system states

A system state (p, M) is a pair of a process and a memory.

s does t: [ to become s’
t:l /
p—>D
ML
— SSYNC
(p, M) — (p', M)
p 25 p!
STAU

(p, M) = (p', M)

synchronising between the process and the memory, and
letting threads do internal transitions

— p. 15



Example: SC Interleaving

All threads can read and write the shared memory.

Threads execute asynchronously — the semantics allows
any interleaving of the thread transitions. Here there are
two:

(ti1:x = 1|to:x = 2, {z — 0})

(tr:1|te:x =2, {z — 1}) (tr:x = 1|t2:2, {z — 2})
Q:WazzQ\L itl:Wazzl
<t1:1‘t2:2, {CC —> 2}> <t1:1‘t2:2, {CIZ —> 1}>

But each interleaving has a linear order of reads and writes
to the memory.

— p. 16



Combinatorial Explosion

The behaviour of ¢1:2 = = + 1|te:z = = + 7 for the initial store
{z — 0}:

(il (=2 +7), {z —1}) * (t1:1]t:8, {il — 8})
(hi(z = D)|ta:(z = 2 +7), {z — 0}) (hl|ty:(z = T+0), {z > 1})

\
/
\
/

(i:(z =14 0)|ta:(z =2+ 7), {:rr—>0}> (ti:(x = 1D)|te:(z =7+ 0), {z — 0}) (ti:l|to:(z = T7), {z = 1}) L (t1:1|t2:7, {z = T})

(hi(z =z +1)|t:(x ), {2 0}) (tix(z =1+ 0)|to:(z = T+ 0), {z > 0}) (hi(z = D|tp:(z = 7), {z — 0})

.\
/
|
f

|te:(z =7+0), {z — 0}) (ti:(z =14 0)|t2:(z =7), {z — 0}) (o = 17, {z = T}) —2— (t1:1]t2:7, {z +— 1})

Y
\
/
\

(ti:(z =24+ D|to:(z =T7), {z — 0}) (ti:z =14 0|t2:7, {x — 7})

/

(ti:x =z + 1|t2:7, {z — T}) *

<t1:8‘t2:7, {[l —r 8}>

NB: the labels +, w and r in this picture are just informal hints as to how
those transitions were derived

— p. 17



Morals

o For free interleaving, number of systems states scales
as n', where n is the threads per state and ¢ the
number of threads.

# Drawing state-space diagrams only works for really tiny
examples — we need better techniques for analysis.

# Almost certainly you (as the programmer) didn’t want
all those 3 outcomes to be possible — need better
idioms or constructs for programming.

— p. 18



Let’s Not Pretend... that we live in an SC world
Not since that IBM System 370/158MP in 1972

et

nor in x86, ARM, POWER, SPARC, or ltanium

or in C, C++, or Java

— . 19



First, more x86 detalils...

In our toy language, assignments and dereferencing are
atomic. For example,

(t1:2 = 3498734590879238429384|ty:x = 7, {2 > 0})

will reduce to a state with z either 3498734590879238429384
or 7, not something with the first word of one and the
second word of the other. Implement?

Butin ¢:(z = e)|ty:€’, the steps of evaluating e and ¢’ can be
interleaved.



x86 ISA, Locked Instructions

Thread O

Thread 1

INC x

INC x

— D.
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x86 ISA, Locked Instructions

Thread O

Thread 1

INC x

(read x=0; write x=1)

INC x

(read x=0; write x=1)

Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

— D.
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x86 ISA, Locked Instructions

Thread O

Thread 1

INC x (read x=0; write x=1

) | INC x (read x=0; write x=1)

Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread O

Thread 1

LOCK:INC x

LOCK:INC x

Forbidden Final State: [x]=1

— D.
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x86 ISA, Locked Instructions

Thread O Thread 1

INC x (read x=0; write x=1) | INC x (read x=0; write x=1)

Allowed Final State: [x]=1

Non-atomic (even in SC semantics)

Thread O Thread 1
LOCK:INC x LOCK:INC x
Forbidden Final State: [x]=1

Also LOCK’d ADD, SUB, XCHG, etc., and CMPXCHG

— D.



x86 ISA, Locked Instructions

Compare-and-swap (CAS):
CMPXCHG dest«src

compares EAX with dest, then:
# if equal, set ZF=1 and load src into dest,
® otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.

— p. 22



Barriers and LOCK’d Instructions

» MFENCE memory barrier
s flushes local write buffer
# LOCK instructions (atomic INC, ADD, CMPXCHG,
etc.)
s flush local write buffer
s Qlobally locks memory

Thread 0 Thread 1

MOV [x]+1 (write x=1) | MOV [y]«+1 (write y=1)
MFENCE MFENCE
MOV EAX«|y] (ready=0) | MOV EBX«+[x] (read x=0)

Forbidden Final State: Thread 0:EAX=0 A Thread 1:EBX=0

NB: both are expensive




x86-TSO Abstract Machine

Thread e oo Thread
A Al A A A
———————————————————————————————————————————————————————————————— v______________________l
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Lock Shared Memory
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x86-TSO Abstract Machine: Interface

Events
e = tWax=v a write of value v to address z by thread ¢
t:Rx=v a read of v from x by ¢
t:B an MFENCE memory barrier by ¢
t:L start of an instruction with LOCK prefix by ¢
t:U end of an instruction with LOCK prefix by ¢
[ an internal action of the machine,
moving x = v from the write buffer on ¢ to
shared memory
where

® tis a hardware thread id, of type tid,
#® 1 and y are memory addresses, of type addr

# v and w are machine words, of type value



x86-TSO Abstract Machine: Machine States

A machine state s is a record

s:( M :addr— value;
B : tid — (addr x value) list;
L : tid option))

Here:

#® s.M is the shared memory, mapping addresses to
values

® s.B gives the store buffer for each thread

® s.L is the global machine lock indicating when a thread
has exclusive access to memory

. 26



x86-TSO Abstract Machine: Auxiliary Definitions

Say ¢ is not blocked in machine state s if either it holds the
lock (s.L. = SOMEt) or the lock is not held (s.. = NONE).

Say there are no pending writes in t’s buffer s. B(t) for
address z if there are no (x,v) elements in s. B(t).

— . 27



x86-TSO Abstract Machine: Behaviour

RM: Read from memory
not_blocked(s, t)

s.M(z) =
no_pending(s.B(t), z)

tRz=v

Thread ¢ can read v from memory at address z if ¢
IS not blocked, the memory does contain v at z,
and there are no writes to x in ¢’s store buffer.



x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not_blocked(s, t)

b1 bs. S.B(t) — by —|—|—[($, 1})] ~+—+ b9
no_pending(by, )

tRz=v

Thread t can read v from its store buffer for
address z if ¢t I1s not blocked and has v as the
newest write to z in its buffer;

p. 29



x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

tWr=v

s@®(B:=s.B& (t— ([(z,v)] +s.B(1))))

Thread t can write v to its store buffer for address z
at any time;

— p. 30



x86-TSO Abstract Machine: Behaviour

WM: Write from write buffer to memory
not_blocked(s, t)

s.B(t) =10

++{(z, )]

S t:T w=v,

s®(M:=s.M D (x+— v)

If ¢ 1S not blocked, it can si

)@ (B:=s.B& (t+— b))

ently dequeue the oldest

write from its store buffer and place the value Iin
memory at the given address, without coordinating

with any hardware thread

— p. 31



x86-TSO Abstract Machine: Behaviour

L: Lock
s., = NONE

s.B(t) = ||

s L s (L:=SoME(1))

If the lock is not held and its buffer is empty, thread
t can begin a LOCK'd instruction.

Note that if a hardware thread ¢t comes to a LOCK'd
instruction when its store buffer is not empty, the machine can

take one or more t:7 ,—, steps to empty the buffer and then

Nnrancaond 5. 39



x86-TSO Abstract Machine: Behaviour

U: Unlock
s. = SOME(t)

s.B(t) = ||

s Y osq (L :=NONE)

If ¢ holds the lock, and its store buffer is empty, it can end a
LOCK’d instruction.

— p. 33



x86-TSO Abstract Machine: Behaviour

B: Barrier
s.B(t) =]

t:B
S — S

If ¢’'s store buffer is empty, it can execute an
MFENCE.

— pD. 34



Notation Reference

SOME and NONE construct optional values
(-,-) builds tuples

|| builds lists

+H appends lists

- @ (-:=-) updates records

(- = -) updates functions.

— p. 35



SB, Revisited

Thread 0 Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread °e Thread
A A A
% ® 0 0 %
o o
W W
= =
5 5
Lock Xx=0 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0 Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread °e Thread
A A A
tolW z=1
% ® 0 0 %
o o
W W
= =
5 5
Lock X=0 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0 Thread 1
MOV [x]«1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread °e Thread
A A A
% ® 0 0 %
T o
W W
= =
5 5
(x,1)
Lock X=0 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0 Thread 1
MOV [x]«+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread ce Thread
A A A
t1:VV Y= i
o o
& &
5} o
" (x1) i
Lock X=0 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0

Thread 1

MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)

MFENCE

MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread °e Thread
% ® 0 0 %
T T
oy o3/
= =
) )
(X’1 ) (ys1 )
x=0 Shared Memory y=0

— p. 36



SB, Revisited

Thread O Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread oo Thread
A A A A A A
% o 060 %
o o
w w
< <
5 5
(x,1) (y,1)
vy tO:T r=1
Lock X=0 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0

Thread 1

MOV [x]«+1 (write x=1)
MFENCE

MOV [y]«+1
MFENCE

(write y=1)

MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread °e Thread

% ® 0 0 %
T T
oy o3/
= =
) )

(y,1)

Lock =1 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0 Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread ce Thread
A A A A
to1B
% ® 0 0 %
o o
w W
=1 =1
5 5
(y,1)
Lock =1 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0

Thread 1

MOV [x]«+1 (write x=1)
MFENCE

MOV [y]«+1
MFENCE

(write y=1)

MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread °e Thread

% ® 0 0 %
T T
oy o3/
= =
) o)

to:Ry=0 (y,1)

Lock =1 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0 Thread 1
MOV [x]«1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread oo Thread
A A A
% e 6 o %
o o
W W
=1 =1
5 5
(y,1)
vy s y=1
Lock =1 Shared Memory y=0

— p. 36



SB, Revisited

Thread 0 Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread oo Thread
A A A A
% e 6 o %
3 3
W W
=1 =1
o} o}
Lock =1 Shared Memory  y=1

— p. 36



SB, Revisited

Thread O Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread oo Thread
A A A A
to1B
% e 6 o %
3 3
W W
=1 <
o} o}
Lock =1 Shared Memory  y=1

— p. 36



SB, Revisited

Thread O Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread oo Thread
A A A A
% e 6 o %
3 3
W W
=1 <
5 5 w
t1:Rx=1
Lock =1 Shared Memory  y=1

— p. 36



SB, Revisited

Thread O Thread 1
MOV [x]+1 (write x=1) | MOV [y]+1 (write y=1)
MFENCE MFENCE
MOV EAX<«+[y|] (ready) MOV EBX<«+[x] (read x)
Thread oo Thread
A A A A A
% e 6 o %
@ D
vy) W
=1 =1
o} o}
Lock =1 Shared Memory  y=1

— p. 36



Locked INC

Thread O Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread oo Thread
| A A | l A A
% o 060 %
@ @
W W
= =1
o} o}
Yy
| Y
Lock X=0 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread oo Thread
A A A
ItO:W r=] | \
% o 060 %
@ ]
y) o
= <
o} o
Yy
| Y
Lock X=0 Shared Memory

— p. 37



Locked INC

Thread O Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread oo Thread
| A A | l A A
% o 060 %
@ @
W W
= =1
o} o}
(x,1)
Yy
Y Y
Lock X=0 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread °e
| A A
% o 060 %
D @
W) o
< =
o} o}
(x,1)
Y Y tO:T rx=1
Y Y
Lock X=0 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread oo Thread
| A A | l A A
% o 060 %
@ @
W W
< =
o} o
Yy
Y Y
Lock =1 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread eee Thread
| A A | l A A
% o 060 %
D @
| W) o
3 S =
| o) o
to:Ll
l Y Y
! Y Y
Lock =1 Shared Memory

— p. 37



Locked INC

Thread O Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread oo Thread
| A A | l A A
% o 060 %
@ @
| W W
3 =1 =
| © o}
i Yy
Y Y
Lock =1 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread oo Thread
| A | l A A
% o 060 %
@ ]
1 W W
3 =1 =1
| o) o
3 to:Rx=1
3 Yy
Y Y
Lock =1 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread oo Thread
A A A
ItO:W r=2 | \
% o 060 %
@ ]
1 W W
3 =1 =1
| o) o
3 Yy
Y Y
Lock =1 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
LOCK: INC x LOCK: INC x
Thread °e
| A
% o 060 %
@ ]
| uy) vy)
3 =1 =
3 o) @
(x,2)
3 Yy
Y Y
Lock =1 Shared Memory

— p. 37



Locked INC

Thread 0 Thread 1
MOV [x]«1  (write x=1)
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Implementing Mutexes with x86 Spinlocks

Suppose register eax holds the address z, which holds 1 if
the lock is free or < 0 if taken.

lock: LOCK DEC [eax]
JNS enter
spin: CMP [eax],0
JLE spin
JMP lock
enter:
critical section
unlock: MOV [eax]«1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 LOCK’d instructions in implementations of Linux _ , ss
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Spinlock Example (SC)

while atomic_decrement(x) < 0 {

while x < 0 { skip } }

critical section
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Shared Memory Thread 0 Thread 1
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x=0 lock
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x = -1 critica spin, reading X
X =1 unlock, writing x
X =1 read X
x=0 lock
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Spinlock Example (x86-TSO)

while atomic_decrement(x) < 0 {
while x < 0 { skip } }

critical section
X <1
Shared Memory Thread 0 Thread 1
X =1
x=10 lock
X = -1 critical lock
x = -1 critical spin, reading X
X = -1 unlock, writing x to buffer
X = -1 .. spin, reading X
X = write x from buffer
x =1 read X
x=10 lock
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NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible
behavior, not a description of the implementation internals

Force: Of the internal optimizations of processors, only
per-thread FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers,
nondeterministic unbuffering, arbitrary interleaving

— p. 41



Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel:

hyperthreading): multiple hardware threads/core sharing
resources.

If the OS flushes store buffers on context switch, software
threads should have the same semantics.
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That's x86

Next slot, 3:30PM: TD session, x86

Tomorrow, 9:00AM: The more relaxed Power and ARM
architectures.
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