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These Lectures
Semantics of concurrency in multiprocessors and
programming languages.

Establish a solid basis for thinking about relaxed-memory
executions, linking to usage, microarchitecture, experiment,
and semantics. x86, POWER/ARM, C/C++11

Today: x86
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Inventing a Usable Abstraction

Have to be:
Unambiguous
Sound w.r.t. experimentally observable behaviour
Easy to understand
Consistent with what we know of vendors intentions
Consistent with expert-programmer reasoning
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Inventing a Usable Abstraction

Key facts:
Store buffering (with forwarding) is observable
IRIW is not observable, and is forbidden by the recent
docs
Various other reorderings are not observable and are
forbidden

These suggest that x86 is, in practice, like SPARC TSO.
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x86-TSO Abstract Machine

Thread

Lock

W
rite Buffer

W
rite Buffer

Shared Memory

Thread
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SB, on x86
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Thread

Lock

W
rite Buffer

W
rite Buffer

Shared Memory

Thread

y= 0x=0
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How to formally define this?

Separate instruction semantics and memory model

Define the memory model in two (provably equivalent)
styles:

an abstract machine (or operational model)
an axiomatic model

Put the instruction semantics and abstract machine in
parallel, exchanging read and write messages (and
lock/unlock messages).
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Let’s Pretend... that we live in an SC world

Shared Memory

Thread1 Threadn

W R RW

Multiple threads acting on a sequentially consistent (SC)
shared memory
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A Tiny Language
location, x , m address
integer , n integer
thread id , t thread id
expression, e ::= expression

| n integer literal
| x read from address x

| x = e write value of e to address x

| e; e ′ sequential composition
| e + e ′ plus

process , p ::= process
| t :e thread
| p|p′ parallel composition
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A Tiny Language

That was just the syntax — how can we be precise about
the permitted behaviours of programs?
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Defining an SC Semantics: expressions

e
l−→ e ′ e does l to become e ′

x
R x=n−−−−→ n

READ

x = n
W x=n−−−−→ n

WRITE

e
l−→ e ′

x = e
l−→ x = e ′

WRITE CONTEXT

n; e
τ−→ e

SEQ

e1
l−→ e ′1

e1; e2
l−→ e ′1; e2

SEQ CONTEXT

e
l−→ e ′ e does l to become e ′

e1
l−→ e ′1

e1 + e2
l−→ e ′1 + e2

PLUS CONTEXT 1

e2
l−→ e ′2

n1 + e2
l−→ n1 + e ′2

PLUS CONTEXT 2

n = n1 + n2

n1 + n2
τ−→ n

PLUS
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Example: SC Expression Trace
(x = y); x
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Example: SC Expression Trace
(x = y); x
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R y=7−−−→ W x=7−−−−→ τ−→ R x=9−−−→ 9
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Example: SC Expression Trace
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y
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READ

x = y
R y=7−−−→ x = 7
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Example: SC Expression Trace
(x = y); x

(x = y); x
R y=7−−−→ W x=7−−−−→ τ−→ R x=9−−−→ 9

7; x
τ−→ x

SEQ

x
R x=9−−−→ 9

READ
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Defining an SC Semantics: lifting to processes

p
t:l−→ p′ p does t : l to become p′

e
l−→ e ′

t :e
t:l−→ t :e ′

THREAD

p1
t:l−→ p′1

p1|p2
t:l−→ p′1|p2

PAR CONTEXT LEFT

p2
t:l−→ p′2

p1|p2
t:l−→ p1|p′2

PAR CONTEXT RIGHT

free interleaving
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Defining an SC Semantics: SC memory
Take an SC memory M to be a function from addresses to
integers.

Define the behaviour as a labelled transition system (LTS):
the least set of (memory,label,memory) triples satisfying
these rules.

M
t:l−→ M ′ M does t : l to become M ′

M (x ) = n

M
t :R x=n−−−−−→ M

MREAD

M
t :W x=n−−−−−→ M ⊕ (x %→ n)

MWRITE
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Defining an SC Semantics: whole-system states
A system state 〈p, M 〉 is a pair of a process and a memory.

s
t:l−→ s ′ s does t : l to become s ′

p
t:l−→ p′

M
t:l−→ M ′

〈p, M 〉 t:l−→ 〈p′, M ′〉
SSYNC

p
t :τ−−→ p′

〈p, M 〉 t :τ−−→ 〈p′, M 〉
STAU

synchronising between the process and the memory, and
letting threads do internal transitions
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Example: SC Interleaving
All threads can read and write the shared memory.

Threads execute asynchronously – the semantics allows
any interleaving of the thread transitions. Here there are
two:

〈t1:x = 1|t2:x = 2, {x %→ 0}〉
t1:W x=1

!!!!!
!!!

!!!
!!!

!
t2:W x=2

""""
"""

"""
"""

""

〈t1:1|t2:x = 2, {x %→ 1}〉

t2:W x=2
##

〈t1:x = 1|t2:2, {x %→ 2}〉

t1:W x=1
##

〈t1:1|t2:2, {x %→ 2}〉 〈t1:1|t2:2, {x %→ 1}〉

But each interleaving has a linear order of reads and writes
to the memory.
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Combinatorial Explosion
The behaviour of t1:x = x + 1|t2:x = x + 7 for the initial store
{x %→ 0}:

〈t1:1|t2:(x = x + 7), {x %→ 1}〉 r $$ • + $$ • w $$ 〈t1:1|t2:8, {ll %→ 8}〉

〈t1:(x = 1)|t2:(x = x + 7), {x %→ 0}〉
r

%%###
####

####
####

##

w
&&$$$$$$$$$$$$$$$$$

〈t1:1|t2:(x = 7 + 0), {x %→ 1}〉
+

%%%%%
%%%%

%%%%
%%%%

%

〈t1:(x = 1 + 0)|t2:(x = x + 7), {x %→ 0}〉
r

''&&
&&&

&&&
&&&

&

+
((''''''''''''

〈t1:(x = 1)|t2:(x = 7 + 0), {x %→ 0}〉
+

%%###
####

####
####

##

w
&&$$$$$$$$$$$$$$$$$

〈t1:1|t2:(x = 7), {x %→ 1}〉 w $$ 〈t1:1|t2:7, {x %→ 7}〉

〈t1:(x = x + 1)|t2:(x = x + 7), {x %→ 0}〉

r
((''''''''''''

r
''&&

&&&
&&&

&&&
&

〈t1:(x = 1 + 0)|t2:(x = 7 + 0), {x %→ 0}〉

+
&&$$$$$$$$$$$$$$$$$

+ %%###
####

####
####

##
〈t1:(x = 1)|t2:(x = 7), {x %→ 0}〉

w
&&((((((((((((((((

w
%%%%%

%%%%
%%%%

%%%%
%

〈t1:(x = x + 1)|t2:(x = 7 + 0), {x %→ 0}〉
r

((''''''''''''

+ ''&&
&&&

&&&
&&&

&
〈t1:(x = 1 + 0)|t2:(x = 7), {x %→ 0}〉

+
&&$$$$$$$$$$$$$$$$$

w
%%###

####
####

####
##

〈t1:x = 1|t2:7, {x %→ 7}〉 w $$ 〈t1:1|t2:7, {x %→ 1}〉

〈t1:(x = x + 1)|t2:(x = 7), {x %→ 0}〉

r
&&$$$$$$$$$$$$$$$$$

w

%%###
####

####
####

##
〈t1:x = 1 + 0|t2:7, {x %→ 7}〉

+
&&((((((((((((((((

〈t1:x = x + 1|t2:7, {x %→ 7}〉 r $$ • + $$ • w $$ 〈t1:8|t2:7, {ll %→ 8}〉

NB: the labels +, w and r in this picture are just informal hints as to how
those transitions were derived
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Morals

For free interleaving, number of systems states scales
as nt, where n is the threads per state and t the
number of threads.
Drawing state-space diagrams only works for really tiny
examples – we need better techniques for analysis.
Almost certainly you (as the programmer) didn’t want
all those 3 outcomes to be possible – need better
idioms or constructs for programming.
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Let’s Not Pretend... that we live in an SC world
Not since that IBM System 370/158MP in 1972

nor in x86, ARM, POWER, SPARC, or Itanium

or in C, C++, or Java
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First, more x86 details...

In our toy language, assignments and dereferencing are
atomic. For example,
〈t1:x = 3498734590879238429384|t2:x = 7, {x %→ 0}〉
will reduce to a state with x either 3498734590879238429384
or 7, not something with the first word of one and the
second word of the other. Implement?

But in t1:(x = e)|t2:e ′, the steps of evaluating e and e ′ can be
interleaved.
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x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x INC x
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x86 ISA, Locked Instructions

Thread 0 Thread 1

INC x (read x=0; write x=1) INC x (read x=0; write x=1)
Allowed Final State: [x]=1

Non-atomic (even in SC semantics)
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x86 ISA, Locked Instructions

Thread 0 Thread 1
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Allowed Final State: [x]=1

Non-atomic (even in SC semantics)
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LOCK;INC x LOCK;INC x
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x86 ISA, Locked Instructions

Compare-and-swap (CAS):

CMPXCHG dest←src

compares EAX with dest, then:
if equal, set ZF=1 and load src into dest,
otherwise, clear ZF=0 and load dest into EAX

All this is one atomic step.
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Barriers and LOCK’d Instructions

MFENCE memory barrier
flushes local write buffer

LOCK’d instructions (atomic INC, ADD, CMPXCHG,
etc.)

flush local write buffer
globally locks memory

Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MFENCE MFENCE

MOV EAX←[y] (read y=0) MOV EBX←[x] (read x=0)
Forbidden Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

NB: both are expensive
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x86-TSO Abstract Machine

Thread

Lock

W
rite Buffer

W
rite Buffer

Shared Memory

Thread
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x86-TSO Abstract Machine: Interface
Events
e ::= t:W x=v a write of value v to address x by thread t

| t:Rx=v a read of v from x by t

| t:B an MFENCE memory barrier by t

| t:L start of an instruction with LOCK prefix by t

| t:U end of an instruction with LOCK prefix by t

| t:τ x=v an internal action of the machine,
moving x = v from the write buffer on t to
shared memory

where

t is a hardware thread id, of type tid,

x and y are memory addresses, of type addr

v and w are machine words, of type value
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x86-TSO Abstract Machine: Machine States

A machine state s is a record

s : 〈[ M : addr → value;
B : tid → (addr × value) list;
L : tid option]〉

Here:
s.M is the shared memory, mapping addresses to
values
s.B gives the store buffer for each thread
s.L is the global machine lock indicating when a thread
has exclusive access to memory
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x86-TSO Abstract Machine: Auxiliary Definitions

Say t is not blocked in machine state s if either it holds the
lock (s.L = SOME t) or the lock is not held (s.L = NONE).

Say there are no pending writes in t’s buffer s.B(t) for
address x if there are no (x, v) elements in s.B(t).

– p. 27



x86-TSO Abstract Machine: Behaviour

RM: Read from memory
not blocked(s , t)

s .M (x ) = v

no pending(s .B(t), x )

s t:Rx=v−−−−−−→ s

Thread t can read v from memory at address x if t
is not blocked, the memory does contain v at x ,
and there are no writes to x in t ’s store buffer.
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x86-TSO Abstract Machine: Behaviour

RB: Read from write buffer
not blocked(s , t)

∃b1 b2. s .B(t) = b1 ++[(x , v)] ++b2
no pending(b1, x )

s t:Rx=v−−−−−−→ s

Thread t can read v from its store buffer for
address x if t is not blocked and has v as the
newest write to x in its buffer;
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x86-TSO Abstract Machine: Behaviour

WB: Write to write buffer

s t:W x=v−−−−−−→

s ⊕ 〈[B := s .B ⊕ (t %→ ([(x , v)] ++s .B(t)))]〉

Thread t can write v to its store buffer for address x

at any time;
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x86-TSO Abstract Machine: Behaviour

WM: Write from write buffer to memory
not blocked(s , t)

s .B(t) = b ++[(x , v)]

s t:τ x=v−−−−−→

s ⊕ 〈[M := s .M ⊕ (x %→ v)]〉 ⊕ 〈[B := s .B ⊕ (t %→ b)]〉

If t is not blocked, it can silently dequeue the oldest
write from its store buffer and place the value in
memory at the given address, without coordinating
with any hardware thread
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x86-TSO Abstract Machine: Behaviour

L: Lock
s .L = NONE

s .B(t) = [ ]

s t:L−−→ s ⊕ 〈[L :=SOME(t)]〉

If the lock is not held and its buffer is empty, thread
t can begin a LOCK’d instruction.

Note that if a hardware thread t comes to a LOCK’d

instruction when its store buffer is not empty, the machine can

take one or more t:τ x=v steps to empty the buffer and then

proceed – p. 32



x86-TSO Abstract Machine: Behaviour

U: Unlock
s .L = SOME(t)

s .B(t) = [ ]

s t:U−−→ s ⊕ 〈[L :=NONE]〉
If t holds the lock, and its store buffer is empty, it can end a
LOCK’d instruction.
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x86-TSO Abstract Machine: Behaviour

B: Barrier

s .B(t) = [ ]

s t:B−−→ s

If t ’s store buffer is empty, it can execute an
MFENCE.
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Notation Reference

SOME and NONE construct optional values

(·, ·) builds tuples

[ ] builds lists

++ appends lists

·⊕ 〈[· := ·]〉 updates records

·(· %→ ·) updates functions.
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SB, Revisited
Thread 0 Thread 1

MOV [x]←1 (write x=1) MOV [y]←1 (write y=1)
MFENCE MFENCE

MOV EAX←[y] (read y) MOV EBX←[x] (read x)

Thread

Lock

W
rite Buffer

W
rite Buffer

Shared Memory

Thread

y= 0x= 0
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Locked INC
Thread 0 Thread 1

MOV [x]←1 (write x=1)
LOCK; INC x LOCK; INC x

Thread

Lock

W
rite Buffer

W
rite Buffer

Shared Memory

Thread

x= 0
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Implementing Mutexes with x86 Spinlocks
Suppose register eax holds the address x , which holds 1 if
the lock is free or ≤ 0 if taken.

lock: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP lock

enter:

critical section

unlock: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 LOCK’d instructions in implementations of Linux – p. 38
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while x ≤ 0 { skip } }
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Spinlock Example (SC)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical
x = -1 critical lock
x = -1 critical spin, reading x
x = 1 unlock, writing x
x = 1 read x
x = 0 lock
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Spinlock Example (x86-TSO)
while atomic decrement(x) < 0 {

while x ≤ 0 { skip } }
critical section
x ←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x
x = -1 unlock, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 lock

– p. 40



NB: This is an Abstract Machine

A tool to specify exactly and only the programmer-visible
behavior, not a description of the implementation internals

Thread

Lock

W
rite Buffer

W
rite Buffer

Shared Memory

Thread ⊇beh

-=hw

Force: Of the internal optimizations of processors, only
per-thread FIFO write buffers are visible to programmers.

Still quite a loose spec: unbounded buffers,
nondeterministic unbuffering, arbitrary interleaving

– p. 41



Processors, Hardware Threads, and Threads

Our ‘Threads’ are hardware threads.

Some processors have simultaneous multithreading (Intel:
hyperthreading): multiple hardware threads/core sharing
resources.

If the OS flushes store buffers on context switch, software
threads should have the same semantics.

– p. 42



That’s x86

Next slot, 3:30PM: TD session, x86

Tomorrow, 9:00AM: The more relaxed Power and ARM
architectures.

– p. 43


