

Sound Optimisations in the C11/C++11 Memory Model

November 15, 2012

1 Eliminations of non-atomics

Construction 1.1. From a pre-execution (O', W') of a program P' which is an elimination of a well-defined program P we want to build a candidate execution (O, W) . First, we pick an opsem $O \in P$ such that O' is an elimination of O . Then we build a related witness W by taking W' , and compute $<_{hb}$. Finally we modify W as follows:

- **RaR:** If i is a RaR justified by a read r , then for every write w such that $w <_{rf} r$, we add $w <_{rf} i$
- **RaW:** If i is a RaW justified by a write w , then we add $w <_{rf} i$
- **IR:** If i is a IR, then if there is a write w to the same location with $w <_{hb} i$ we pick an opsem O such that i reads the same value, and add $w <_{rf} i$ to W .
- **OW:** No change to W
- **WaW:** If a is a WaW justified by a write w , then for every read r such that $w <_{rf} r$ and $a <_{hb} r$ we replace $w <_{rf} r$ by $a <_{rf} r$
- **WaR:** If a is a WaR, then for every read r of the same value at the same location such that $a <_{hb} r$ and either $w <_{rf} r$ with $w <_{hb} a$ or r reads from no write, we add $a <_{rf} r$. (replacing $w <_{rf} r$ if it exists)

Lemma 1.1. *If (O', W') is a pre-execution, then so is (O, W)*

Proof. As we preserve everything but $<_{rf}$ from W' , consistent non-atomic read values is the only predicate that is hard to prove. It is wrong if there is w_1 and w_2 two non-atomic writes at the same location, and i a non-atomic read at the same location with $w_1 <_{hb} w_2 <_{hb} i$ and $w_1 <_{rf} i$. We check every case below to prove that this is impossible.

- **RaR:**

If i is not the RaR it is impossible as exactly the same pattern would occur in (O', W') . So we assume that i is a RaR justified by a read r . Because of how the construction works, $w_1 <_{rf} r$. So because (O', W') is a pre-execution, $w_1 <_{hb} r$. Three cases must be examined:

- w_2 and r are not comparable by $<_{hb}$:

We use the prefix-closedness of opsemsets to find an opsem $\tilde{O} \in P$ that is a prefix of O that does include w_2 and r but not i . As it does not contain i , the restriction of W to it makes it a pre-execution and it exhibits a data-race between w_2 and r . Absurd as P is well-defined.

- $w_2 <_{hb} r$:

Then $w_1 <_{hb} w_2 <_{hb} r$ and $w_1 <_{rf} r$ in (O', W') as well which is impossible as it is a pre-execution.

- $r <_{hb} w_2$:

If w_2 is in the same thread as r and i , then $r <_{sb} w_2 <_{sb} i$, which is impossible by definition of RaR. Otherwise, there must be a release action a , and an acquire action b such that $r <_{sb} a <_{hb} w_2 <_{hb} b <_{sb} i$, which is also impossible by definition of RaR

- RaW:

Again, if the eliminated access is not i , the same problem would happen in (O', W') , so we assume i is the eliminated access. So there must be a write w that justifies i being a RaW and $w <_{rf} i$. By construction we only add one $<_{rf}$ edge, so $w = w_1$ and $w_1 <_{sb} i$. w_2 can't be in the same thread by definition of RaW and if it is in another thread, there must be a release-acquire pair between w_1 and r to justify the $<_{hb}$ edges, which is again impossible.

- IR:

Impossible by construction, as we chose a write that is maximal with regards to $<_{hb}$ as the origin of the $<_{rf}$ edge.

- OW:

Because in this case we do not change any $<_{rf}$ edge, the only hard case (for which the problem is not directly present in (O', W') , is if w_2 is the OW. So there is a write w_3 that justifies it, and $w_2 <_{sb} w_3$. There are three cases to be looked at:

- w_3 and i are not comparable by $<_{hb}$:

By receptiveness of opsemsets we can pick a new one where i reads the same value as w_2 . Then we use prefix-closedness to get a prefix \tilde{O} from that opsem, that contains w_3 and i but nothing after i . By restricting W to that opsem, and replacing $w_1 <_{rf} i$ by $w_2 <_{rf} i$, we get a pre-execution. It has a data-race (or an unsequenced-race) between w_3 and i , which is impossible as P is well-defined.

- $w_3 <_{hb} i$:

Then we also have $w_1 <_{hb} w_3 <_{hb} i$ and $w_1 <_{rf} i$ in (O', W') which is impossible as (O', W') is a pre-execution

- $i <_{hb} w_3$:

Either i is in the same thread (impossible by definition of OW) or there is a release-acquire pair between w_2 and w_3 to explain the $<_{hb}$ edges (impossible for the same reason)

- WaW:

Either of the writes can be the eliminated one:

- If w_1 is the WaW:

It is justified by a write w , with $w <_{hb} w_2 <_{hb} i$ and $w <_{rf} i$ in (O', W') , which is impossible as (O', W') is a pre-execution.

- If w_2 is the WaW, justified by a write w :

- * If w and w_1 are not comparable by $<_{hb}$:

We use the prefix-closedness of opsemsets to find an opsem $\tilde{O} \in P$ that is a prefix of O that does include w and w_1 but not w_2 or i . As it does not contain i , the restriction of W to it makes it a pre-execution and it exhibits a data-race between w and w_1 . Absurd as P is well-defined.

- * If $w <_{hb} w_1$:
Either w_1 is in the same thread as w and w_2 or there is a release-acquire pair between them to account for the $<_{hb}$ edges. Both are impossible by the definition of WaW
- * If $w_1 <_{hb} w$:
Then $w_1 <_{hb} w <_{hb} i$ and $w_1 <_{rf} i$ in (O', W') which is impossible because it is a pre-execution.

- WaR:

- If w_1 is the WaR:
In (O', W') , $w_2 <_{hb} i$, so i must be from some write w_0 as (O', W') is a pre-execution. By construction, $w_0 <_{hb} w_1$. So $w_0 <_{hb} w_2 <_{hb} i$ and $w_0 <_{rf} i$ in (O', W') , which is impossible as it is a pre-execution.
- If w_2 is the WaR, justified by a read r :
 - * If w_1 and r are not comparable by $<_{hb}$:
We use the prefix-closedness of opsemsets to find an opsem $\tilde{O} \in P$ that is a prefix of O that does include w_1 and r but not w_2 or i . As it does not contain i , the restriction of W to it makes it a pre-execution and it exhibits a data-race between w_1 and r . Absurd as P is well-defined.
 - * If $w_1 <_{hb} r$:
By construction, there must exist some write w_3 such that $w_3 <_{rf} r$. Four cases follow:
 - w_3 and w_1 are not comparable by $<_{hb}$:
We use the prefix-closedness of opsemsets to find an opsem $\tilde{O} \in P$ that is a prefix of O that does include w_3 and w_1 but not w_2 or i . As it does not contain i , the restriction of W to it makes it a pre-execution and it exhibits a data-race between w_3 and w_1 . Absurd as P is well-defined.
 - $w_3 <_{hb} w_1$:
We would have $w_3 <_{hb} w_1 <_{hb} r$ and $w_3 <_{rf} r$ in (O', W') , which is impossible as it is a pre-execution
 - $w_1 <_{hb} w_3$:
We would have $w_1 <_{hb} w_3 <_{hb} i$ and $w_1 <_{rf} i$ in (O', W') , which is impossible as it is a pre-execution
 - $w_1 = w_3$:
As (O', W') is a pre-execution, and $w_1 <_{rf} r$ in it, w_1 is of the same value as r , and thus of the same value as w_2 . So by construction i would read from w_2 instead of w_1 .

□

Lemma 1.2. *If (O', W') a pre-execution exhibits an undefined behavior, then so does (O, W) (built by the construction above).*

Proof. We look at the the four possible cases:

- Unsequenced race:
If a and b are in an unsequenced race in (O', W') , they still are in it in (O, W) as we do not change $<_{sb}$ in the construction

- Data race:

The same: $<_{hb}$ is preserved during the construction

- Indeterminate read:

We mostly add $<_{rf}$ edges in the construction to new reads, or we replace already-existing edges. The only exception is in the case for WaR: If w is a WaR justified by a read r , i is an indeterminate read and $w <_{hb} i$, then $w <_{rf} i$ in (O, W) and not in (O', W') . However, if there exists w_1 such that $w_1 <_{rf} i$ in (O', W') , then $w_1 <_{hb} r$, as (O', W') is a pre-execution. And thus $w_1 <_{hb} i$ as $r <_{sb} w <_{hb} i$, which is impossible as $(O, W)'$ is a pre-execution. So there is no such w_1 , and r is also an indeterminate read, in both (O', W') and (O, W)

- Bad mutexes:

Trivial as we do not affect synchronisation actions in any way.

□

Theorem 1.1. *Let the opsemset P' be an elimination of an opsemset P . If P is well-defined, then so is P' and any execution of P' has the same behavior as some execution of P .*

Proof. First, if P' were to be ill-defined, there would be a pre-execution (O', W') of P' that exhibits an undefined behaviour. By the above lemmata, it is possible to build a corresponding pre-execution (O, W) of P that also exhibits an undefined behaviour, which is impossible as P is assumed to be well-defined. So P' is well-defined

And by the lemmata above, for every execution (O', W') of P' we can build an execution (O, W) of P , that have the exact same observable behavior (by construction, we do not affect in any way synchronisation actions). □

2 Proof of soundness of adding $<_{sb}$ edges

Theorem 2.1. *Let the opsemset P' be a linearisation of the opsemset P . If P is data-race free then so is P' , and any execution of P' has the same observable behaviour as some execution of P*

Proof. Same as structure as for the theorem on eliminations, see below for the appropriate lemmata □

Construction 2.1. We only delete the extra $<_{sb}$ edges to build O . W is the same as W' .

Lemma 2.1. *If $x <_{hb} y$ in (O, W) , then $x <_{hb} y$ in (O', W')*

Proof. We keep $<_{sw}$ and $<_{asw}$ constant, and the property is true of $<_{sb}$, so it is also true of $<_{hb}$. □

Lemma 2.2. *If (O', W') is a pre-execution then (O, W) is too.*

Proof. We check all clauses of (O, W) being a pre-execution:

- consistent locks:

$<_{sc}$ is preserved, and $<_{hb}$ is more restricted in (O, W) than in (O', W')

- consistent sc-order:

Same reason as above (plus we preserve $<_{mo}$).

- consistent mo-order:
Same reason as above
- Well-formed reads-from mapping:
 $<_{rf}$ is preserved
- consistent non-atomic read values:
Only problematic if either
 - $w <_{rf}^{(O,W)} r$ and not $w <_{hb}^{(O,W)} r$ while $w <_{hb}^{(O',W')} r$. In that case w and r are unrelated by $<_{hb}^{(O,W)}$, so we pick another witness, where r reads from the latest write in $<_{hb}$ that happens-before it, and we have a contradiction with the fact that P is well-defined
 - Or $w1 <_{hb}^{(O,W)} w2 <_{hb}^{(O,W)} r$ and $w1 <_{rf}^{(O,W)} r$, but then the same problem would have occurred in (O', W')
- consistent atomic read values:
Only problematic if either:
 - $w <_{rf}^{(O,W)} r$ and $r <_{hb}^{(O,W)} w$. But in that case, the same problem exist in (O', W')
 - Or $w1 <_{hb}^{(O,W)} w2 <_{hb}^{(O,W)} r$ and $w1 <_{rf} r$, but then the same problem would have occurred in (O', W')
- coherent memory use:
 $<_{rf}$, $<_{mo}$ are the same in (O, W) and (O', W') , and $<_{hb}$ is preserved going from (O, W) to (O', W')
- sc-reads restricted:
Same as above.
- sc-fences heeded:
Same as above
- RMW-atomicity:
Same as above

□

Lemma 2.3. *If (O', W') exhibits an undefined behavior, then so does (O, W)*

Proof. We look at the the four possible cases:

- Unsequenced race:
 $<_{sb}$ edges are only added, not deleted
- Data race:
 $<_{sb}$ edges (and thus $<_{hb}$ edges too) are only added, not deleted
- Indeterminate read:
 $<_{rf}$ is preserved, so obvious
- Bad mutexes:
 $<_{sc}$ is identical between both pre-execs, and if the pattern with unlock using $<_{sb}$ is absent in (O', W') , then it is also absent in (O, W)

□

3 Proof of the theorem on introduction of redundant reads

Definition 3.1. A read $a = Rlv$ can be introduced in (O', W') if:

- RaR-introduced:

- $\forall b$ access to l , $a <_{\text{sb}}^{(O', W')} b$ or $b <_{\text{sb}}^{(O', W')} a$
- $\exists r = Rlv$
- $r <_{\text{sb}}^{(O', W')} a$
- There is no release between r and a w.r.t. ($<_{\text{sb}}^{(O', W')}$)

- RaW-introduced

- $\forall b$ access to l , $a <_{\text{sb}}^{(O', W')} b$ or $b <_{\text{sb}}^{(O', W')} a$
- $\exists w = Wlv$
- $w <_{\text{sb}}^{(O', W')} a$
- There is no release between w and a .

Construction 3.1. To get (O, W) from (O', W') , erase every introduced read, and all relation edges that use them.

Lemma 3.1. *If (O', W') is a pre-execution then (O, W) is a pre-execution*

Proof.

- Consistent non-atomic read-values: this property was true of every load in (O', W') and we preserve $<_{\text{rf}}$ and $<_{\text{hb}}$, so it is still true of every load
- Everything else is trivial too as we touch neither synchronisation actions nor relations between them

□

Lemma 3.2. *If (O', W') a pre-execution has an undefined behavior then (O, W) has one too.*

Proof.

- If (O', W') has a data-race. If that data-race does not involve an introduced read, it is still in (O, W) . Otherwise, there is a an introduced read, b the access that justifies it, and w the write that conflicts with it. $b <_{\text{sb}}^{(O', W')} a$, so if $w <_{\text{hb}} b$ we would have $w <_{\text{hb}}^{(O', W')} a$ and no race. So if there is no race in (O, W) , $b <_{\text{hb}} w$. Absurd as there is no release between b and a and not $a <_{\text{hb}}^{(O', W')} w$.

- Unsequenced-races involving introduced reads are impossible by definition
- Indeterminate reads not involving introduced reads are clearly propagated to (O, W) . If a RaR is an indeterminate read, then the read that justifies it is too, or (O', W') would violate consistent non-atomic read-values. If a RaW is an indeterminate read, then (O', W') violate consistent non-atomic read-values because of the write that justifies it.
- Bad mutexes: we preserve everything related to this.

□

Theorem 3.1. *Let program P' be an introduction of program P .*

Then P well-defined $\implies P'$ well-defined

Proof. Let (O', W') be a pre-execution of P' .

There exists (O, W) a candidate execution of P , and by the above lemmata, (O, W) is also a pre-execution of P .

By the last lemma, (O', W') cannot have undefined behavior or (O, W) would have one. \square

Theorem 3.2. *Let P be a program that is well-defined.*

Let P' be a program that is an introduction of P .

Then $\forall (O', W')$ execution of P' , $\exists (O, W)$ execution of P , such that $(O, W) \simeq_{vb} (O', W')$.

Proof. By the previous theorem P' is well-defined.

Let (O', W') be an execution of P' .

By the construction above, we build (O, W) a candidate execution of P with the same observable behavior.

By the lemmata above, (O, W) is a pre-execution of P .

As P is well-defined, (O, W) is actually an execution of it. \square

4 Proof of the theorem on reorderings

The proof on reordering works in the same way as the other ones: by building a pre-execution (O, W) of P for every pre-execution (O', W') of P' , with the same observable behavior. (and the same undefined behavior if any).

As we only observed reorderings among non-atomics, we only proved those here, and not roach-motel reorderings, where actions can be pushed in critical sections. Roach-motel reordering significantly complicates the proof.

The construction is thus particularly trivial: we just keep the same witness.

Lemma 4.1. *If x and y are actions at the same location, or synchronisation actions then $x <_{hb}^{(O, W)} y \Leftrightarrow x <_{hb}^{(O', W')} y$*

Proof. We do not reorder anything with a synchronisation action, and two actions at the same location are not reorderable; and $<_{sw}$ remains the same as it derives from $<_{rf}$ and $<_{sc}$. \square

Lemma 4.2. *If (O', W') is a pre-execution, then so is (O, W)*

Proof. $<_{sc}$, $<_{mo}$, $<_{rf}$ are preserved, as well as $<_{hb}$ on actions to the same location and $<_{hb}$ on synchronisation actions. \square

Lemma 4.3. *If (O', W') exhibits an undefined behaviour, then so does (O, W)*

Proof.

- Unsequenced race: by the definition of reordering

- Data race: $<_{hb}$ is preserved on actions to the same location

- Indeterminate read: $<_{rf}$ is preserved

- Bad mutexes: all relations are preserved on synchronisation actions

\square