
Sound Optimisations in the C11/C++11 Memory Model

November 15, 2012

1 Eliminations of non-atomics

Construction 1.1. From a pre-execution (O′,W ′) of a program P ′ which is an elimination of
a well-defined program P we want to build a candidate execution (O,W ). First, we pick an
opsem O ∈ P such that O′ is an elimination of O. Then we build a related witness W by taking
W ′, and compute <hb. Finally we modify W as follows:

• RaR: If i is a RaR justified by a read r, then for every write w such that w <rf r, we add
w <rf i

• RaW: If i is a RaW justified by a write w, then we add w <rf i

• IR: If i is a IR, then if there is a write w to the same location with w <hb i we pick an
opsem O such that i reads the same value, and add w <rf i to W .

• OW: No change to W

• WaW: If a is a WaW justified by a write w, then for every read r such that w <rf r and
a <hb r we replace w <rf r by a <rf r

• WaR: If a is a WaR, then for every read r of the same value at the same location such
that a <hb r and either w <rf r with w <hb a or r reads from no write, we add a <rf r.
(replacing w <rf r if it exists)

Lemma 1.1. If (O′,W ′) is a pre-execution, then so is (O,W )

Proof. As we preserve everything but <rf from W ′, consistent non-atomic read values is the
only predicate that is hard to prove. It is wrong if there is w1 and w2 two non-atomic writes
at the same location, and i a non-atomic read at the same location with w1 <hb w2 <hb i and
w1 <rf i. We check every case below to prove that this is impossible.

• RaR:
If i is not the RaR it is impossible as exactly the same pattern would occur in (O′,W ′).
So we assume that i is a RaR justified by a read r. Because of how the construction
works, w1 <rf r. So because (O′,W ′) is a pre-execution, w1 <hb r. Three cases must be
examined:

– w2 and r are not comparable by <hb:
We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P that is a prefix
of O that does include w2 and r but not i. As it does not contain i, the restriction
of W to it makes it a pre-execution and it exhibits a data-race between w2 and r.
Absurd as P is well-defined.

1



– w2 <hb r:
Then w1 <hb w2 <hb r and w1 <rf r in (O′,W ′) as well which is impossible as it is a
pre-execution.

– r <hb w2:
If w2 is in the same thread as r and i, then r <sb w2 <sb i, which is impossible by
definition of RaR. Otherwise, there must be a release action a, and an acquire action
b such that r <sb a <hb w2 <hb b <sb i, which is also impossible by definition of RaR

• RaW:
Again, if the eliminated access is not i, the same problem would happen in (O′,W ′), so
we assume i is the eliminated access. So there must be a write w that justifies i being a
RaW and w <rf i. By construction we only add one <rf edge, so w = w1 and w1 <sb i.
w2 can’t be in the same thread by definition of RaW and if it is in another thread, there
must be a release-acquire pair between w1 and r to justify the <hb edges, which is again
impossible.

• IR:
Impossible by construction, as we chose a write that is maximal with regards to <hb as
the origin of the <rf edge.

• OW:
Because in this case we do not change any <rf edge, the only hard case (for which the
problem is not directly present in (O′,W ′), is if w2 is the OW. So there is a write w3 that
justifies it, and w2 <sb w3. There are three cases to be looked at:

– w3 and i are not comparable by <hb:
By receptiveness of opsemsets we can pick a new one where i reads the same value as
w2. Then we use prefix-closedness to get a prefix Õ from that opsem, that contains
w3 and i but nothing after i. By restricting W to that opsem, and replacing w1 <rf i
by w2 <rf i, we get a pre-execution. It has a data-race (or an unsequenced-race)
between w3 and i, which is impossible as P is well-defined.

– w3 <hb i:
Then we also have w1 <hb w3 <hb i and w1 <rf i in (O′,W ′) which is impossible as
(O′,W ′) is a pre-execution

– i <hb w3:
Either i is in the same thread (impossible by definition of OW) or there is a release-
acquire pair between w2 and w3 to explain the <hb edges (impossible for the same
reason)

• WaW:
Either of the writes can be the eliminated one:

– If w1 is the WaW:
It is justified by a write w, with w <hb w2 <hb i and w <rf i in (O′,W ′), which is
impossible as (O′,W ′) is a pre-execution.

– If w2 is the WaW, justified by a write w:

∗ If w and w1 are not comparable by <hb:
We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P that is a
prefix of O that does include w and w1 but not w2 or i. As it does not contain
i, the restriction of W to it makes it a pre-execution and it exhibits a data-race
between w and w1. Absurd as P is well-defined.

2



∗ If w <hb w1:
Either w1 is in the same thread as w and w2 or there is a release-acquire pair
between them to account for the <hb edges. Both are impossible by the definition
of WaW

∗ If w1 <hb w:
Then w1 <hb w <hb i and w1 <rf i in (O′,W ′) which is impossible because it is
a pre-execution.

• WaR:

– If w1 is the WaR:
In (O′,W ′), w2 <hb i, so i must be from some write w0 as (O′,W ′) is a pre-execution.
By construction, w0 <hb w1 So w0 <hb w2 <hb i and w0 <rf i in (O′,W ′), which is
impossible as it is a pre-execution.

– If w2 is the WaR, justified by a read r:

∗ If w1 and r are not comparable by <hb:
We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P that is a
prefix of O that does include w1 and r but not w2 or i. As it does not contain
i, the restriction of W to it makes it a pre-execution and it exhibits a data-race
between w1 and r. Absurd as P is well-defined.

∗ If w1 <hb r:
By construction, there must exist some write w3 such that w3 <rf r. Four cases
follow:

· w3 and w1 are not comparable by <hb:
We use the prefix-closedness of opsemsets to find an opsem Õ ∈ P that is
a prefix of O that does include w3 and w1 but not w2 or i. As it does not
contain i, the restriction of W to it makes it a pre-execution and it exhibits
a data-race between w3 and w1. Absurd as P is well-defined.

· w3 <hb w1:
We would have w3 <hb w1 <hb r and w3 <rf r in (O′,W ′), which is impossible
as it is a pre-execution

· w1 <hb w3:
We would have w1 <hb w3 <hb i and w1 <rf i in (O′,W ′), which is impossible
as it is a pre-execution

· w1 = w3:
As (O′,W ′) is a pre-execution, and w1 <rf r in it, w1 is of the same value as
r, and thus of the same value as w2. So by construction i would read from
w2 instead of w1.

Lemma 1.2. If (O′,W ′) a pre-execution exhibits an undefined behavior, then so does (O,W )
(built by the construction above).

Proof. We look at the the four possible cases:

• Unsequenced race:
If a and b are in an unsequenced race in (O′,W ′), they still are in it in (O,W ) as we do
not change <sb in the construction

3



• Data race:
The same: <hb is preserved during the construction

• Indeterminate read:
We mostly add <rf edges in the construction to new reads, or we replace already-existing
edges. The only exception is in the case for WaR: If w is a WaR justified by a read r,
i is an indeterminate read and w <hb i, then w <rf i in (O,W ) and not in (O′,W ′).
However, if there exists w1 such that w1 <rf i in (O′,W ′), then w1 <hb r, as (O′,W ′)
is a pre-execution. And thus w1 <hb i as r <sb w <hb i, which is impossible as (O,W )′

is a pre-execution. So there is no such w1, and r is also an indeterminate read, in both
(O′,W ′) and (O,W )

• Bad mutexes:
Trivial as we do not affect synchronisation actions in any way.

Theorem 1.1. Let the opsemset P ′ be an elimination of an opsemset P . If P is well-defined,
then so is P ′ and any execution of P ′ has the same behavior as some execution of P .

Proof. First, if P ′ were to be ill-defined, there would be a pre-execution (O′,W ′) of P ′ that
exhibits an undefined behaviour. By the above lemmata, it is possible to build a corresponding
pre-execution (O,W ) of P that also exhibits an undefined behaviour, which is impossible as P
is assumed to be well-defined. So P ′ is well-defined
And by the lemmata above, for every execution (O′,W ′) of P ′ we can build an execution (O,W )
of P , that have the exact same observable behavior (by construction, we do not affect in any
way synchronisation actions).

2 Proof of soundness of adding <sb edges

Theorem 2.1. Let the opsemset P ′ be a linearisation of the opsemset P . If P is data-race free
then so is P ′, and any execution of P ′ has the same observable behaviour as some execution of
P

Proof. Same as structure as for the theorem on eliminations, see below for the appropriate
lemmata

Construction 2.1. We only delete the extra <sb edges to build O. W is the same as W ′.

Lemma 2.1. If x <hb y in (O,W ), then x <hb y in (O′,W ′)

Proof. We keep <sw and <asw constant, and the property is true of <sb, so it is also true of
<hb.

Lemma 2.2. If (O′,W ′) is a pre-exectution then (O,W ) is too.

Proof. We check all clauses of (O,W ) being a pre-execution:

• consistent locks:
<sc is preserved, and <hb is more restricted in (O,W ) than in (O′,W ′)

• consistent sc-order:
Same reason as above (plus we preserve <mo).

4



• consistent mo-order:
Same reason as above

• Well-formed reads-from mapping:
<rf is preserved

• consistent non-atomic read values:
Only problematic if either

– w <
(O,W )
rf r and not w <

(O,W )
hb r while w <

(O′,W ′)
hb r. In that case w and r are

unrelated by <
(O,W )
hb , so we pick another witness, where r reads from the latest write

in <hb that happens-before it, and we have a contradiction with the fact that P is
well-defined

– Or w1 <
(O,W )
hb w2 <

(O,W )
hb r and w1 <

(O,W )
rf r, but then the same problem would have

occured in (O′,W ′)

• consistent atomic read values:
Only problematic if either:

– w <
(O,W )
rf r and r <

(O,W )
hb w. But in that case, the same problem exist in (O′,W ′)

– Or w1 <
(O,W )
hb w2 <

(O,W )
hb r and w1 <rf r, but then the same problem would have

occured in (O′,W ′)

• coherent memory use:
<rf , <mo are the same in (O,W ) and (O′,W ′), and <hb is preserved going from (O,W )
to (O′,W ′)

• sc-reads restricted:
Same as above.

• sc-fences heeded:
Same as above

• RMW-atomicity:
Same as above

Lemma 2.3. If (O′,W ′) exhibits an undefined behavior, then so does (O,W )

Proof. We look at the the four possible cases:

• Unsequenced race:
<sb edges are only added, not deleted

• Data race:
<sb edges (and thus <hb edges too) are only added, not deleted

• Indeterminate read:
<rf is preserved, so obvious

• Bad mutexes:
<sc is identical between both pre-execs, and if the pattern with unlock using <sb is absent
in (O′,W ′), then it is also absent in (O,W )

5



3 Proof of the theorem on introduction of redundant reads

Definition 3.1. A read a = Rlv can be introduced in (O′,W ′) if:

• RaR-introduced:

– ∀b access to l, a <
(O′,W ′)
sb b or b <

(O′,W ′)
sb a

– ∃r = Rlv

– r <
(O′,W ′)
sb a

– There is no release between r and a w.r.t. (<
(O′,W ′)
sb )

• RaW-introduced

– ∀b access to l, a <
(O′,W ′)
sb b or b <

(O′,W ′)
sb a

– ∃w = Wlv

– w <
(O′,W ′)
sb a

– There is no release between w and a.

Construction 3.1. To get (O,W ) from (O′,W ′), erase every introduced read, and all relation
edges that use them.

Lemma 3.1. If (O′,W ′) is a pre-execution then (O,W ) is a pre-execution

Proof. • Consistent non-atomic read-values: this property was true of every load in (O′,W ′)
and we preserve <rf and <hb, so it is still true of every load

• Everything else is trivial too as we touch neither synchronisation actions nor relations
between them

Lemma 3.2. If (O′,W ′) a pre-execution has an undefined behavior then (O,W ) has one too.

Proof. • If (O′,W ′) has a data-race. If that data-race does not involve an introduced read,
it is still in (O,W ). Otherwise, there is a an introduced read, b the access that justifies

it, and w the write that conflicts with it. b <
(O′,W ′)
sb a, so if w <hb b we would have

w <
(O′,W ′)
hb a and no race. So if there is no race in (O,W ), b <hb w. Absurd as there is no

release between b and a and not a <
(O′,W ′)
hb w.

• Unsequenced-races involving introduced reads are impossible by definition

• Indeterminate reads not involving introduced reads are clearly propagated to (O,W ).
If a RaR is an indeterminate read, then the read that justifies it is too, or (O′,W ′)
would violate consistent non-atomic read-values. If a RaW is an indeterminate read, then
(O′,W ′) violate consistent non-atomic read-values because of the write that justifies it.

• Bad mutexes: we preserve everything related to this.

Theorem 3.1. Let program P ′ be an introduction of program P .
Then P well-defined =⇒ P ′ well-defined

6



Proof. Let (O′,W ′) be a pre-execution of P ′.
There exists (O,W ) a candidate execution of P , and by the above lemmata, (O,W ) is also a
pre-execution of P .
By the last lemma, (O′,W ′) cannot have undefined behavior or (O,W ) would have one.

Theorem 3.2. Let P be a program that is well-defined.
Let P ′ be a program that is an introduction of P .
Then ∀(O′,W ′) execution of P ′, ∃(O,W ) execution of P , such that (O,W ) 'vb (O′,W ′).

Proof. By the previous theorem P ′ is well-defined.
Let (O′,W ′) be an execution of P ′.
By the construction above, we build (O,W ) a candidate execution of P with the same observable
behavior.
By the lemmata above, (O,W ) is a pre-execution of P .
As P is well-defined, (O,W ) is actually an execution of it.

4 Proof of the theorem on reorderings

The proof on reordering works in the same way as the other ones: by building a pre-execution
(O,W ) of P for every pre-execution (O′,W ′) of P ′, with the same observable behavior. (and
the same undefined behavior if any).

As we only observed reorderings among non-atomics, we only proved those here, and not
roach-motel reorderings, where actions can be pushed in critical sections. Roach-motel reorder-
ing significantly complicates the proof.

The construction is thus particularly trivial: we just keep the same witness.

Lemma 4.1. If x and y are actions at the same location, or synchronisation actions then

x <
(O,W )
hb y ⇔ x <

(O′,W ′)
hb y

Proof. We do not reorder anything with a synchronisation action, and two actions at the same
location are not reorderable; and <sw remains the same as it derives from <rf and <sc.

Lemma 4.2. If (O′,W ′) is a pre-execution, then so is (O,W )

Proof. <sc, <mo, <rf are preserved, as well as <hb on actions to the same location and <hb on
synchronisation actions.

Lemma 4.3. If (O′,W ′) exhibits an undefined behaviour, then so does (O,W )

Proof. • Unsequenced race: by the definition of reordering

• Data race: <hb is preserved on actions to the same location

• Indeterminate read: <rf is preserved

• Bad mutexes: all relations are preserved on synchronisation actions

7


	Eliminations of non-atomics
	Proof of soundness of adding <sb edges
	Proof of the theorem on introduction of redundant reads
	Proof of the theorem on reorderings

