Sound Optimisations in the C11/C++11 Memory Model

November 15, 2012

1 Eliminations of non-atomics

Construction 1.1. From a pre-execution (O’, W’) of a program P’ which is an elimination of
a well-defined program P we want to build a candidate execution (O, W). First, we pick an
opsem O € P such that O’ is an elimination of O. Then we build a related witness W by taking
W', and compute <pp. Finally we modify W as follows:

RaR: If 7 is a RaR justified by a read r, then for every write w such that w <, r, we add
W <, 1

RaW: If 7 is a RaW justified by a write w, then we add w <, i

IR: If 4 is a IR, then if there is a write w to the same location with w <pp 7 we pick an
opsem O such that ¢ reads the same value, and add w <,f 7 to W.

OW: No change to W

WaW: If a is a WaW justified by a write w, then for every read r such that w <, r and
a <pp T We replace w <, 7 by a <, r

WaR: If a is a WaR, then for every read r of the same value at the same location such
that a <pp 7 and either w <, r with w <pp, a or r reads from no write, we add a <, r.
(replacing w < r if it exists)

Lemma 1.1. If (O',W’) is a pre-execution, then so is (O, W)

Proof. As we preserve everything but <, from W/, consistent non-atomic read values is the
only predicate that is hard to prove. It is wrong if there is w; and ws two non-atomic writes
at the same location, and ¢ a non-atomic read at the same location with wi; <np we <pp ¢ and
wy <, 1. We check every case below to prove that this is impossible.

e RaR:

If ¢ is not the RaR it is impossible as exactly the same pattern would occur in (O', W).
So we assume that ¢ is a RaR justified by a read r. Because of how the construction
works, w1 <, r. So because (O’, W') is a pre-execution, w; <pp 7. Three cases must be
examined:

— wo and r are not comparable by <pp:
We use the prefix-closedness of opsemsets to find an opsem O € P that is a prefix
of O that does include ws and r but not 7. As it does not contain 4, the restriction
of W to it makes it a pre-execution and it exhibits a data-race between wy and r.
Absurd as P is well-defined.

— Wy <pp T
Then w1 <pp wa <pp r and wy <, r in (O', W') as well which is impossible as it is a
pre-execution.

— 1 <pp W2:
If wo is in the same thread as r and ¢, then r <g, we <g ¢, which is impossible by
definition of RaR. Otherwise, there must be a release action a, and an acquire action
b such that r <gp @ <pp wa <npp b <sp 7, which is also impossible by definition of RaR

e RaW:
Again, if the eliminated access is not i, the same problem would happen in (O, W’), so
we assume ¢ is the eliminated access. So there must be a write w that justifies ¢ being a
RaW and w <, i. By construction we only add one <, edge, so w = w; and w; <, .
wy can’t be in the same thread by definition of RaW and if it is in another thread, there
must be a release-acquire pair between w; and r to justify the <y, edges, which is again
impossible.

e IR:
Impossible by construction, as we chose a write that is maximal with regards to < as
the origin of the < edge.

e OW:
Because in this case we do not change any <, edge, the only hard case (for which the
problem is not directly present in (O’, W’), is if wo is the OW. So there is a write w3 that
justifies it, and wo <gp ws. There are three cases to be looked at:

— ws and 7 are not comparable by <pp:
By receptiveness of opsemsets we can pick a new one where i reads the same value as
wy. Then we use prefix-closedness to get a prefix O from that opsem, that contains
ws and 7 but nothing after ¢. By restricting W to that opsem, and replacing wy < @
by we <, i, we get a pre-execution. It has a data-race (or an unsequenced-race)
between w3 and 4, which is impossible as P is well-defined.

— w3 <pp ¢
Then we also have wy <pp w3 <pp ¢ and w1 <, ¢ in (O', W') which is impossible as
(O',W') is a pre-execution

— 1 <pp W3:
Either 7 is in the same thread (impossible by definition of OW) or there is a release-
acquire pair between wy and ws to explain the <y, edges (impossible for the same
reason

)

o WaW:
Either of the writes can be the eliminated one:

— If wy is the WaW:
It is justified by a write w, with w <pp wa <pp ¢ and w <, ¢ in (O, W), which is
impossible as (O’, W) is a pre-execution.

— If wy is the WaW, justified by a write w:

x If w and wy are not comparable by <jpp:
We use the prefix-closedness of opsemsets to find an opsem O € P that is a
prefix of O that does include w and wy but not wy or i. As it does not contain
1, the restriction of W to it makes it a pre-execution and it exhibits a data-race
between w and wi. Absurd as P is well-defined.

* If w <pp wy:
Either w; is in the same thread as w and ws or there is a release-acquire pair
between them to account for the <y}, edges. Both are impossible by the definition
of WaW

* If wy <pp w:
Then w1 <pp w <pp 7 and w1 <, ¢ in (O', W') which is impossible because it is
a pre-execution.

e WaR:

— If wy is the WaR:
In (O',W'), wy <pp 4, so i must be from some write wqy as (O’, W’) is a pre-execution.
By construction, wg <pp w1 S0 wy <pp w2 <pp ¢ and wy <, ¢ in (O', W'), which is
impossible as it is a pre-execution.

— If wo is the WaR, justified by a read 7:

x If wy and r are not comparable by <jp:
We use the prefix-closedness of opsemsets to find an opsem O € P that is a
prefix of O that does include wy and r but not wy or i. As it does not contain
1, the restriction of W to it makes it a pre-execution and it exhibits a data-race
between wy and r. Absurd as P is well-defined.
x If wy <pp 7
By construction, there must exist some write ws such that ws <, r. Four cases
follow:
- wsg and w1y are not comparable by <pp:
We use the prefix-closedness of opsemsets to find an opsem O € P that is
a prefix of O that does include w3 and wy but not wo or i. As it does not
contain 4, the restriction of W to it makes it a pre-execution and it exhibits
a data-race between ws and wy. Absurd as P is well-defined.
© w3 <pb Wi:
We would have ws <pp w1 <pp r and wz <, rin (O’, W’), which is impossible
as it is a pre-execution
- Wy <pp W3-
We would have wy <pp w3 <pp ¢ and wy <, ¢ in (O’, W), which is impossible
as it is a pre-execution
© W1 = ws:
As (O',W') is a pre-execution, and wy <, r in it, w; is of the same value as
r, and thus of the same value as ws. So by construction ¢ would read from
wo instead of wy.

O]

Lemma 1.2. If (O',W') a pre-execution exhibits an undefined behavior, then so does (O, W)
(built by the construction above).

Proof. We look at the the four possible cases:

e Unsequenced race:
If @ and b are in an unsequenced race in (O', W’), they still are in it in (O, W) as we do
not change <, in the construction

e Data race:
The same: <y} is preserved during the construction

e Indeterminate read:
We mostly add < edges in the construction to new reads, or we replace already-existing
edges. The only exception is in the case for WaR: If w is a WaR justified by a read r,
i is an indeterminate read and w <pp %, then w <, ¢ in (O,W) and not in (O', W').
However, if there exists wy such that wy <, ¢ in (O, W’), then wy <pp 7, as (O',W')
is a pre-execution. And thus wy <pp @ as r <g» w <pp %, which is impossible as (O, W)’
is a pre-execution. So there is no such wi, and r is also an indeterminate read, in both
(O, W') and (O, W)

e Bad mutexes:
Trivial as we do not affect synchronisation actions in any way.

O]

Theorem 1.1. Let the opsemset P’ be an elimination of an opsemset P. If P is well-defined,
then so is P’ and any execution of P' has the same behavior as some execution of P.

Proof. First, if P’ were to be ill-defined, there would be a pre-execution (O',W') of P’ that
exhibits an undefined behaviour. By the above lemmata, it is possible to build a corresponding
pre-execution (O, W) of P that also exhibits an undefined behaviour, which is impossible as P
is assumed to be well-defined. So P’ is well-defined

And by the lemmata above, for every execution (O’, W') of P’ we can build an execution (O, W)
of P, that have the exact same observable behavior (by construction, we do not affect in any
way synchronisation actions).]

2 Proof of soundness of adding <, edges

Theorem 2.1. Let the opsemset P’ be a linearisation of the opsemset P. If P is data-race free
then so is P', and any execution of P’ has the same observable behaviour as some execution of
P

Proof. Same as structure as for the theorem on eliminations, see below for the appropriate
lemmata O

Construction 2.1. We only delete the extra <g, edges to build O. W is the same as W’.
Lemma 2.1. If x <up y in (O, W), then z <pp y in (O, W)

Proof. We keep <qw and <asw constant, and the property is true of <gp, so it is also true of
<hb- O

Lemma 2.2. If (O',W') is a pre-exectution then (O, W) is too.
Proof. We check all clauses of (O, W) being a pre-execution:

e consistent locks:
<sc Is preserved, and <jp, is more restricted in (O, W) than in (O, W)

e consistent sc-order:
Same reason as above (plus we preserve <mo).

e consistent mo-order:
Same reason as above

e Well-formed reads-from mapping:
<,f 1s preserved

e consistent non-atomic read values:
Only problematic if either

(o,w) (o,w) (o'\w")

—w <g r and not w <, r while w <p_ r. In that case w and r are
unrelated by <i(1(b)’W), so we pick another witness, where r reads from the latest write

in <p that happens-before it, and we have a contradiction with the fact that P is
well-defined

— Or wl <E](b),W) w2 <,(1€’W) r and wl <$fO’W) r, but then the same problem would have
occured in (O, W)
e consistent atomic read values:
Only problematic if either:
- w <EfO’W) r and r <E£’W) w. But in that case, the same problem exist in (O', W’)

— Or wl <§]€’W) w2 <£€’W) r and wl <, 7, but then the same problem would have

occured in (O, W)

e coherent memory use:
</f, <mo are the same in (O, W) and (O’,W'), and <y}, is preserved going from (O, W)
to (O', W)

e sc-reads restricted:
Same as above.

e sc-fences heeded:
Same as above

o RMW-atomicity:
Same as above

Lemma 2.3. If (O',W') exhibits an undefined behavior, then so does (O, W)
Proof. We look at the the four possible cases:

e Unsequenced race:
<sp edges are only added, not deleted

e Data race:
<sb edges (and thus <pp edges too) are only added, not deleted

e Indeterminate read:
<,f is preserved, so obvious

e Bad mutexes:
<sc is identical between both pre-execs, and if the pattern with unlock using <, is absent
in (O',W’), then it is also absent in (O, W)

O]

3 Proof of the theorem on introduction of redundant reads

Definition 3.1. A read a = Rlv can be introduced in (O', W) if:

e RaR-introduced:

— Vb access to [, a <£g/’W/) borb <§E’7W’) a
— Jdr = Rlv
e

— There is no release between r and a w.r.t. (<£bo W))

e RaW-introduced

(o)

! !
gbo’w)borb<Sb a

— Vb access to I, a <
— Jw =Wl

(o,w)

—w <y a

— There is no release between w and a.

Construction 3.1. To get (O, W) from (O’, W'), erase every introduced read, and all relation
edges that use them.

Lemma 3.1. If (O, W’) is a pre-execution then (O, W) is a pre-execution

Proof. e Consistent non-atomic read-values: this property was true of every load in (O', W)
and we preserve <, and <pp, so it is still true of every load

e Everything else is trivial too as we touch neither synchronisation actions nor relations

between them
O

Lemma 3.2. If (O',W') a pre-execution has an undefined behavior then (O, W) has one too.

Proof. e If (O, W) has a data-race. If that data-race does not involve an introduced read,
it is still in (O, W). Otherwise, there is a an introduced read, b the access that justifies

it, and w the write that conflicts with it. b <§bo W a, so if w <p, b we would have

(O",W)

w <pp a and no race. So if there is no race in (O, W), b <pp w. Absurd as there is no

! !
release between b and a and not a <E£ W) w.

e Unsequenced-races involving introduced reads are impossible by definition

e Indeterminate reads not involving introduced reads are clearly propagated to (O, W).
If a RaR is an indeterminate read, then the read that justifies it is too, or (O', W’)
would violate consistent non-atomic read-values. If a RaW is an indeterminate read, then
(O',W') violate consistent non-atomic read-values because of the write that justifies it.

e Bad mutexes: we preserve everything related to this.
O

Theorem 3.1. Let program P’ be an introduction of program P.
Then P well-defined = P’ well-defined

Proof. Let (O',W’) be a pre-execution of P’.

There exists (O, W) a candidate execution of P, and by the above lemmata, (O, W) is also a
pre-execution of P.

By the last lemma, (O’, W’) cannot have undefined behavior or (O, W) would have one. O

Theorem 3.2. Let P be a program that is well-defined.
Let P’ be a program that is an introduction of P.
Then ¥(O',W') execution of P', 3(O, W) execution of P, such that (O, W) ~, (O',W').

Proof. By the previous theorem P’ is well-defined.

Let (O',W') be an execution of P’.

By the construction above, we build (O, W) a candidate execution of P with the same observable
behavior.

By the lemmata above, (O, W) is a pre-execution of P.

As P is well-defined, (O, W) is actually an execution of it. O

4 Proof of the theorem on reorderings

The proof on reordering works in the same way as the other ones: by building a pre-execution
(O, W) of P for every pre-execution (O',W') of P’ with the same observable behavior. (and
the same undefined behavior if any).

As we only observed reorderings among non-atomics, we only proved those here, and not
roach-motel reorderings, where actions can be pushed in critical sections. Roach-motel reorder-
ing significantly complicates the proof.

The construction is thus particularly trivial: we just keep the same witness.

Lemma 4.1. If x and y are actions at the same location, or synchronisation actions then

oW o'W’
2 <Oy g LWy

Proof. We do not reorder anything with a synchronisation action, and two actions at the same
location are not reorderable; and <s,, remains the same as it derives from <, and <. O

Lemma 4.2. If (O',W') is a pre-execution, then so is (O, W)

Proof. <sc, <mo, <if are preserved, as well as <pp on actions to the same location and <jpp on
synchronisation actions. O

Lemma 4.3. If (O',W') exhibits an undefined behaviour, then so does (O, W)
Proof. e Unsequenced race: by the definition of reordering

e Data race: <pp is preserved on actions to the same location

e Indeterminate read: <,s is preserved

e Bad mutexes: all relations are preserved on synchronisation actions

	Eliminations of non-atomics
	Proof of soundness of adding <sb edges
	Proof of the theorem on introduction of redundant reads
	Proof of the theorem on reorderings

